
Supvisors
Release 0.18

Julien Le Cléach

May 02, 2024





CONTENTS

1 Introduction 3
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Platform Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Running Supvisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Configuration 7
2.1 Supervisor’s Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Supvisors’ Rules File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Dashboard 31
3.1 Common Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Common footer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Main Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Conciliation Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Supervisor Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Application Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 XML-RPC API 45
4.1 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Supvisors Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Supvisors Statistics Status and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Application Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 XML-RPC Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 REST API 63
5.1 Starting the Flask-RESTX application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Using the REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Using the Swagger UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 supervisorctl extension 67
6.1 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Supvisors Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Statistics Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Application Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Event interface 73
7.1 Available Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

i



7.2 Message header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Message data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 ZeroMQ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 websockets Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Special Features 83
8.1 Synchronizing Supvisors instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Auto-Fencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3 Extra Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 Starting strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.5 Starting Failure strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.6 Running Failure strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.7 Stopping strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.8 Conciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Frequent Asked Questions 95
9.1 Error: . . . cannot be resolved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2 Error: Could not make supvisors rpc interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3 Remote host SILENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.4 Empty Application menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10 Scenario 1 105
10.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.3 Supervisor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.4 Involving Supvisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11 Scenario 2 117
11.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.3 Supervisor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.4 Involving Supvisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12 Scenario 3 133
12.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.3 Supervisor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
12.4 Involving Supvisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

13 Change Log 143
13.1 0.18 (2024-05-02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
13.2 0.17.4 (2024-03-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.3 0.17.3 (2023-12-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.4 0.17.2 (2023-12-04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.5 0.17 (2023-08-17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.6 0.16 (2023-03-12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
13.7 0.15 (2022-11-20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
13.8 0.14 (2022-05-01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.9 0.13 (2022-02-27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.10 0.12 (2022-01-26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
13.11 0.11 (2022-01-02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
13.12 0.10 (2021-09-05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

ii



13.13 0.9 (2021-08-31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
13.14 0.8 (2021-08-22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
13.15 0.7 (2021-08-15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
13.16 0.6 (2021-08-01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
13.17 0.5 (2021-03-01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
13.18 0.4 (2021-02-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
13.19 0.3 (2020-12-29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
13.20 0.2 (2020-12-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
13.21 0.1 (2017-08-11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

14 Indices and tables 157

Python Module Index 159

Index 161

iii



iv



Supvisors, Release 0.18

Supvisors is a Control System for Distributed Applications, based on multiple instances of Supervisor.

CONTENTS 1

http://supervisord.org


Supvisors, Release 0.18

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

1.1 Overview

Supvisors is a control system for distributed applications over multiple Supervisor instances.

The Supvisors software is born from a common need in embedded systems where applications are distributed over
several nodes. The problematic comes with the following challenges:

• to have a status of the processes,

• to have a synthetic status of the applications based on the processes status,

• to have basic statistics about the resources taken by the applications,

• to have a basic status of the nodes,

• to control applications and processes dynamically,

• to distribute the same application over different platforms (developer machine, integration platform, etc),

• to deal with resources (CPU, memory, network, etc),

• to deal with failures:

– missing node when starting,

– crash of a process,

– crash of a node.

As a bonus:

• it should be free, open source, not subject to export control issues,

• it shouldn’t require specific administration rights (root).

Supervisor can handle a part of the requirements but it only works on a single UNIX-like operating system. The
Supervisor website references some third parties dealing with multiple Supervisor instances but they only consist in
dashboards and they focus on the nodes rather than on the applications and their possible distribution over nodes.
Nevertheless, the extensibility of Supervisor makes it possible to implement the missing requirements.

Supvisors works as a Supervisor plugin and is intended for those who are already familiar with Supervisor or who
have neither the time nor the resources to invest in a complex orchestration tool like Kubernetes.

3

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org/plugins.html
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

1.2 Definitions

Here follows a few definitions of terms are used throughout the present documentation.

The term Node refers to an UNIX operating system having a dedicated host name and IP address.

A Supervisor instance is a Supervisor damon running on a Node, and with a distinct HTTP configuration.

A Supvisors instance refers to a Supervisor instance including a Supvisors extension.

Supvisors corresponds to the distributed software grouping all the Supvisors instances configured to work
together.

Multiple Supvisors instances running on the same Node do not necessarily belong to the same Supvisors.

A Supervisor Process is a structure whose configuration is described in a Supervisor Program (or Homo-
geneous Process Group). It is managed by a single Supervisor instance. This Supervisor instance is able
to spawn a UNIX process based on this structure and to control it.

A Supervisor Group (or Heterogeneous Process Group) is a collection of Supervisor Programs. It is also
managed by a single Supervisor instance.

A Supvisors Process is the union of all Supervisor Processes sharing the name Supervisor Group name
and Process name within Supvisors. Such a Supervisor Process is not necessarily defined in all Supervisor
instances.

A Supvisors Application is the collection of all Supvisors Processes sharing the name Supervisor Group
name within Supvisors.

The definitions of all Supvisors Processes and Supvisors Applications are shared across Supvisors and
all Supvisors instances have control over them, even if the process definition is unknown to their respective
hosting Supervisor instance.

1.3 Platform Requirements

Supvisors has been tested and is known to run on Linux (Rocky 8.5, RedHat 8.2 and Ubuntu 20.04 LTS).

Supvisors will not run at all under any version of Windows.

Supvisors works with Python 3.6 to Python 3.12.

An old release of Supvisors (version 0.1, available on PyPi) works with Python 2.7 (and previous versions of Su-
pervisor, i.e. 3.3.0) but is not maintained anymore.

The CSS of the Dashboard has been written for Firefox ESR 91.3.0. The compatibility with other browsers or other
versions of Firefox is unknown.

1.4 Installation

Supvisors has the following dependencies:

4 Chapter 1. Introduction

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

Package Minimal release Usage
Supervisor 4.2.4 Base software, extended by Supvisors
psutil 5.7.3 (optional) Information about system usage
matplotlib 3.3.3 (optional) Graphs for Dashboard
lxml 4.6.2 (optional) XSD validation of the XML rules file
Flask-
RESTX

0.5.1 (py36) 1.1.0
(py37+)

(optional) Expose the Supervisor and Supvisors XML-RPC API through a
REST API

PyZMQ 22.0.3 (optional) Alternative for the Supvisors Event interface
websockets 10.4 (optional) Alternative for the Supvisors Event interface (requires Python

3.7+)

1.4.1 With an Internet access

Supvisors can be installed with pip install:

# minimal install (including Supervisor)
[bash] > pip install supvisors

# install including all optional dependencies
[bash] > pip install supvisors[all]

# install for dashboard statistics and graphs only
# (includes psutil and matplotlib)
[bash] > pip install supvisors[statistics]

# install for XML validation only (includes lxml)
[bash] > pip install supvisors[xml_valid]

# install for the REST API (includes flask-restx)
[bash] > pip install supvisors[flask]

# install for the ZMQ event interface (includes PyZMQ)
[bash] > pip install supvisors[zmq]

# install for the Websockets event interface (includes websockets, requires Python 3.7+)
[bash] > pip install supvisors[ws]

1.4.2 Without an Internet access

All the dependencies have to be installed prior to Supvisors. Refer to the documentation of these dependencies.

Finally, get the latest release from Supvisors releases, unzip the archive and enter the directory supvisors-{version}.

Install Supvisors with the following command:

[bash] > python setup.py install

1.4. Installation 5

http://supervisord.org
https://pypi.python.org/pypi/psutil
https://matplotlib.org
https://lxml.de
https://flask-restx.readthedocs.io
https://flask-restx.readthedocs.io
https://pyzmq.readthedocs.io
https://websockets.readthedocs.io
https://github.com/julien6387/supvisors/releases


Supvisors, Release 0.18

1.4.3 Additional commands

During the installation, a few additional commands are added to the BINDIR (directory that the Python installation has
been configured with):

• supvisorsctl provides access to the extended Supvisors API when used with the option -s URL, which is
missed from the Supervisor supervisorctl (refer to the supervisorctl extension part).

• supvisorsflask provides a Flask-RESTX application that exposes the Supervisor and Supvisors XML-RPC
APIs through a REST API (refer to the REST API page).

Attention: supvisorsflask uses the Flask’s built-in server, which should not be an issue as it is unlikely that
this interface ever needs to be scaled.

1.5 Running Supvisors

Supvisors runs as a plugin of Supervisor so it follows the same principle as Running Supervisor but using multiple
UNIX-like operating systems.

Although Supvisors was originally designed to handle exactly one Supervisor instance per node, it can handle multiple
Supervisor instances on each node since the version 0.11.

However, the Supervisor configuration file MUST:

• be configured with an internet socket (refer to the inet-http-server section settings) ;

• include the [rpcinterface:supvisors] and the [ctlplugin:supvisors] sections (refer to the Configura-
tion page) ;

• be consistent on all considered nodes, more particularly attention must be paid to the list of declared Supvisors
instances and the IP ports used.

Important: A script may be required to start Supervisor on several nodes if not configured to run automatically at
startup (ssh loop for example).

6 Chapter 1. Introduction

http://supervisord.org
https://flask-restx.readthedocs.io
http://supervisord.org
https://flask.palletsprojects.com
http://supervisord.org
http://supervisord.org/running.html
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org/configuration.html#inet-http-server-section-settings
http://supervisord.org


CHAPTER

TWO

CONFIGURATION

2.1 Supervisor’s Configuration File

This section explains how Supvisors uses and complements the Supervisor configuration.

As written in the introduction, all Supervisor instances MUST be configured with an internet socket. username and
password can be used at the condition that the same values are used for all Supervisor instances.

[inet_http_server]
port=:60000
;username=lecleach
;password=p@$$w0rd

Apart from the rpcinterface and ctlplugin sections related to Supvisors, all Supervisor instances can have a
completely different configuration, including the list of programs.

2.1.1 rpcinterface extension point

Supvisors extends the Supervisor’s XML-RPC API.

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface

The parameters of Supvisors are set in this section of the Supervisor configuration file. It is expected that some
parameters are strictly identical for all Supvisors instances otherwise unpredictable behavior may happen. The present
section details where it is applicable.

supvisors_list

The list of expected Supvisors instances to handle, separated by commas. The elements of
supvisors_list define how the Supvisors instances will share information between them and MUST
be identical to all Supvisors instances or unpredictable behavior may happen.

The exhaustive form of an element matches <nick_identifier>host_name:http_port, where:

• nick_identifier is the optional but unique Supervisor identifier (it can be set in the Supervisor
configuration or in the command line when starting the supervisord program) ;

• host_name is the name of the node where the Supvisors instance is running ;

• http_port is the port of the internet socket used to communicate with the Supervisor instance (ob-
viously unique per node).

7

http://supervisord.org/configuration.html
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org/xmlrpc.html
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

Default: the host name, as given by the socket.gethostname() function.

Required: No.

Identical: Yes.

Note: host_name can be the host name, the fully qualified domain name, one of the node aliases or IP
addresses. Supvisors uses the socket.gethostbyaddr(host_name) function to identify the Supvisors
instance declared.

Note: In user-related features (options, rules, XML-RPC) where a Supvisors identifier is requested,
nick_identifier and host_name:http_port can both be used indifferently.

Attention: The chosen host name, alias or IP address must be known to every nodes in the
supvisors_list on the network interface considered. If it’s not the case, check the network con-
figuration.

Hint: If the Supvisors is configured with at most one Supvisors instance per host, the host_name is a
fully acceptable declaration.

Hint: nick_identifier can be seen as a nickname that may be more user-friendly than a host_name
or a host_name:http_port when displayed in the Supvisors Web UI or used in the Supvisors’ Rules
File.

Attention: if http_port is not provided, the local Supvisors instance takes the assumption that the
other Supvisors instance uses the same http_port. The http_port MUST be set if there multiple
Supvisors instances running on the same node.

Important: As a general rule, Supvisors uses the form host_name:http_port to exchange information
between the Supvisors instances. Unless a nick_identifier is provided, this form will also be used on
all user interfaces (configuration files, Web UI, XML-RPC and logs).

software_name

An optional string that will be displayed at the top of the Supvisors Web UI. It is intended to correspond
to the name of the user software.

Default: None.

Required: No.

Identical: No.

software_icon

An optional image that will be displayed at the top of the Supvisors Web UI. It is intended to correspond
to the name of the user software.

8 Chapter 2. Configuration



Supvisors, Release 0.18

Default: None.

Required: No.

Identical: No.

Hint: software_icon are software_name can both be set and will be displayed in that order if required.

multicast_group

The IP address and port number of the Multicast Group where the Supvisors instances will share their
identity between them, separated by a colon (example: 239.0.0.1:1234). This is an alternative to the
supvisors_list option, that allows Supvisors to work in a discovery mode.

Default: None.

Required: No.

Identical: Yes.

Hint: Although it is an alternative, this option can yet be combined with supvisors_list. In this case,
the Supvisors instances declared in the supvisors_list option will form an initial group that may grow
when other unknown Supvisors instances declare themselves.

multicast_interface

The network interface where the Supvisors multicast group will be bound. If not set, INADDR_ANY will
be applied so as to bind on all network interfaces.

Default: None.

Required: No.

Identical: Yes.

multicast_ttl

The time-to-live of a message sent on the Supvisors multicast interface.

Default: 1.

Required: No.

Identical: Yes.

stereotypes

A list of names, separated by commas, that can be used to reference a kind of Supvisors instance in the
rules files. The local Supvisors instance will be tagged using these names and will share this information
with the other Supvisors instances. Although it has been designed to support the discovery mode, it is
made available to the standard mode.

Default: None.

Required: No.

Identical: No.

rules_files

A space-separated sequence of file globs, in the same vein as supervisord include section. Instead of ini
files, XML rules files are expected here. Their content is described in Supvisors’ Rules File. It is highly

2.1. Supervisor’s Configuration File 9

http://supervisord.org/configuration.html#include-section-values


Supvisors, Release 0.18

recommended that this parameter is identical to all Supvisors instances or the startup sequence would be
different depending on which Supvisors instance is given the Master role.

Default: None.

Required: No.

Identical: Yes.

auto_fence

When true, Supvisors will definitely disconnect a Supvisors instance that is inactive. This functionality
is detailed in Auto-Fencing.

Default: false.

Required: No.

Identical: No.

event_link

The communication protocol type used to publish all Supvisors events (Instance, Application and Process
events). Value in [NONE ; ZMQ ; WS]. Other protocols may be considered in the future. If set to NONE, the
interface is not available. If set to ZMQ, events are published through a ZeroMQ TCP socket. If set to WS,
events are published through websockets (requires a Python version 3.7 or later). The protocol of this
interface is detailed in Event interface.

Default: NONE.

Required: No.

Identical: No.

event_port

The port number used to publish all Supvisors events (Instance, Application, Process and Statistics events).
The protocol of this interface is detailed in Event interface.

Default: local Supervisor HTTP port + 1.

Required: No.

Identical: No.

synchro_options

The conditions applied by Supvisors to exit the INITIALIZATION state. Multiple values in [LIST
; TIMEOUT ; CORE ; USER], separated by commas. If STRICT is selected, Supvisors exits the
INITIALIZATION state when all the Supvisors instances declared in the supvisors_list option are
in the RUNNING state. If LIST is selected, Supvisors exits the INITIALIZATION state when all known
Supvisors instances (including those declared in the supvisors_list option AND those discovered) are
in the RUNNING state. If TIMEOUT is selected, Supvisors exits the INITIALIZATION state after the dura-
tion defined in the synchro_timeout option. If CORE is selected, Supvisors exits the INITIALIZATION
state when all the Supvisors instances identified in the core_identifiers option are in a RUNNING
state. If USER is selected, Supvisors exits the INITIALIZATION state as soon as the Master instance is
set, which can be triggered upon user request (using the Supvisors Web UI, the end_sync XML-RPC or
the end_sync command of supervisorctl). The use of this option is more detailed in Synchronizing
Supvisors instances.

Default: STRICT,TIMEOUT,CORE.

Required: No.

Identical: No.

10 Chapter 2. Configuration

https://zeromq.org
https://websockets.readthedocs.io
http://supervisord.org


Supvisors, Release 0.18

synchro_timeout

The time in seconds that Supvisors waits for all expected Supvisors instances to publish their TICK. Value
in [15 ; 1200]. This option is taken into account only if TIMEOUT is selected in the synchro_options.
The use of this option is more detailed in Synchronizing Supvisors instances.

Default: 15.

Required: No.

Identical: No.

inactivity_ticks

By default, a remote Supvisors instance is considered inactive when no tick has been received from it
while 2 ticks have been received fom the local Supvisors instance, which may be a bit strict in a busy
network. This delay is also used when starting / stopping a process, considering that process events are
expected in due time. This option allows to loosen the constraint. Value in [2 ; 720].

Default: 2.

Required: No.

Identical: No.

Note: This option originates from a previous Supvisors design where the event publication mechanism
did not allow to assess the consideration of the request by the remote Supvisors instance. In the current
design, an inactive Supvisors instance is detected before a timeout is triggered on missing expected events.
The option has thus less interest but it is kept anyway for robustness value.

core_identifiers

A list of names, separated by commas. These names can taken from the names deduced from the
supvisors_list option and / or from the union of all stereotypes shared within Supvisors. If
the Supvisors instances of this subset are all in a RUNNING state and the CORE value is set in the
synchro_options option, this will put an end to the synchronization phase in Supvisors. Independently
from the CORE option being used, Supvisors will preferably take a member of this list when selecting a
Master instance. This parameter must be identical to all Supvisors instances or unpredictable behavior
may happen.

Default: None.

Required: No.

Identical: Yes.

disabilities_file

The file path that will be used to persist the program disabilities. This option has been added in support
of the Supervisor request #591 - New Feature: disable/enable. The persisted data will be serialized in a
JSON string so a .json extension is recommended.

Default: None.

Required: No.

Identical: No.

Hint: Both absolute and relative paths are supported. User expansion is also allowed. It is expected that
the folder tree exists. However Supvisors will try to create it if not, unless write permission is denied.

2.1. Supervisor’s Configuration File 11

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/591


Supvisors, Release 0.18

Note: If the file does not exist at startup, all processes are enabled by default and a first version of the file
will be written down accordingly.

starting_strategy

The strategy used to start applications on Supvisors instances. Possible values are in { CONFIG,
LESS_LOADED, MOST_LOADED, LOCAL , LESS_LOADED_NODE, MOST_LOADED_NODE}. The use of this op-
tion is detailed in Starting strategy. It is highly recommended that this parameter is identical to all Supvi-
sors instances or the startup sequence would be different depending on which Supvisors instance is the
Master.

Default: CONFIG.

Required: No.

Identical: Yes.

conciliation_strategy

The strategy used to solve conflicts upon detection that multiple instances of the same program are running.
Possible values are in { SENICIDE, INFANTICIDE, USER, STOP, RESTART, RUNNING_FAILURE }. The use
of this option is detailed in Conciliation. It is highly recommended that this parameter is identical to all
Supvisors instances or the conciliation phase would behave differently depending on which Supvisors
instance is the Master.

Default: USER.

Required: No.

Identical: Yes.

stats_enabled

By default, Supvisors can provide basic statistics on the node and the processes spawned by Supervisor on
the Supvisors Dashboard, provided that the psutil module is installed. This option can be used to adjust
or disable the collection of the host and/or process statistics. Possible values are in { OFF, HOST, PROCESS,
ALL }. For backwards compatibility, boolean values true and false have been kept and are respectively
equal to ALL and OFF.

Default: ALL.

Required: No.

Identical: No.

stats_collecting_period

This is the minimum duration between 2 statistics measurements on one entity (host or process). It is not
a strict period. Value in [1 ; 3600] seconds.

Default: 10.

Required: No.

Identical: No.

Note: The statistics collection is deferred to a dedicated process of Supvisors. The Collector is mainly
using the psutil module. Regardless of the number of processes to manage, the Collector will not take up
more than one processor core. If there are more statistics requests than allowed by one processor core, the
duration between 2 measurements on the same process will inevitably increase.

12 Chapter 2. Configuration

http://supervisord.org
https://pypi.python.org/pypi/psutil
https://pypi.python.org/pypi/psutil


Supvisors, Release 0.18

If there are many processes to deal with and if it is unsuitable to dedicate one whole processor core to
process statistics, the stats_collecting_period should be increased or the process statistics may be
deactivated using the the stats_enabled option.

Attention: If there are multiple Supvisors instances on the same host, there will be multiple Col-
lector processes too. The user should pay attention to set the stats_collecting_period option
accordingly so that the CPU load remains within acceptable limits.

stats_periods

The list of periods for which the statistics will be provided in the Supvisors Dashboard, separated by
commas. Up to 3 int or float values are allowed in [1 ; 3600] seconds.

Default: 10.

Required: No.

Identical: No.

stats_histo

The depth of the statistics history. Value in [10 ; 1500].

Default: 200.

Required: No.

Identical: No.

stats_irix_mode

The way of presenting process CPU values. If true, values are displayed in ‘IRIX’ mode. If false,
values are displayed in ‘Solaris’ mode.

Default: false.

Required: No.

Identical: No.

tail_limit

In its Web UI, Supervisor provides a page that enables to display the 1024 latest bytes of the process logs.
The page is made available by clicking on the process name in the process table. A button is added to
refresh it. The size of the logs can be updated through the URL by updating the limit attribute. The
same function is provided in the Supvisors Web UI. This option has been added to enable a default size
different than 1024 bytes. It applies to processes logs and Supervisor logs.

Default: 1KB.

Required: No.

Identical: No.

tailf_limit

In its Web UI, Supervisor provides a page that enables to display the 1024 latest bytes of the process logs
and that auto-refreshes the page in a tail -f manner. The page is made available by clicking on the
Tail -f button in the process table. The initial size of the logs cannot be updated. The same function is
provided in the Supvisors Web UI. This option has been added to enable a default size different than 1024
bytes. It applies to processes logs and Supervisor logs.

Default: 1KB.

2.1. Supervisor’s Configuration File 13

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

Required: No.

Identical: No.

Attention: Setting the tail_limit and tailf_limit options with very big values may block the
web browser. Moderation should be considered.

The logging options are strictly identical to Supervisor’s. By the way, it is the same logger that is used. These options
are more detailed in supervisord Section values.

logfile

The path to the Supvisors activity log of the supervisord process. This option can include the value
%(here)s, which expands to the directory in which the Supervisor configuration file was found. If
logfile is unset or set to AUTO, Supvisors will use the same logger as Supervisor. It makes it easier
to understand what happens when both Supervisor and Supvisors log in the same file.

Default: AUTO.

Required: No.

Identical: No.

logfile_maxbytes

The maximum number of bytes that may be consumed by the Supvisors activity log file before it is rotated
(suffix multipliers like KB, MB, and GB can be used in the value). Set this value to 0 to indicate an unlimited
log size. No effect if logfile is unset or set to AUTO.

Default: 50MB.

Required: No.

Identical: No.

logfile_backups

The number of backups to keep around resulting from Supvisors activity log file rotation. If set to 0, no
backups will be kept. No effect if logfile is unset or set to AUTO.

Default: 10.

Required: No.

Identical: No.

loglevel

The logging level, dictating what is written to the Supvisors activity log. One of [critical, error,
warn, info, debug, trace, blather]. See also: supervisord Activity Log Levels. No effect if logfile
is unset or set to AUTO.

Default: info.

Required: No.

Identical: No.

14 Chapter 2. Configuration

http://supervisord.org
http://supervisord.org/configuration.html#supervisord-section-values
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org/logging.html#activity-log-levels


Supvisors, Release 0.18

2.1.2 ctlplugin extension point

Supvisors also extends supervisorctl. This feature is not described in Supervisor documentation.

[ctlplugin:supvisors]
supervisor.ctl_factory = supvisors.supvisorsctl:make_supvisors_controller_plugin

2.1.3 Configuration File Example

[inet_http_server]
port=:60000
;username=lecleach
;password=p@$$w0rd

[supervisord]
logfile=./log/supervisord.log
loglevel=info
pidfile=/tmp/supervisord.pid

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=http://localhost:60000

[include]
files = common/*/*.ini %(host_node_name)s/*.ini %(host_node_name)s/*/*.ini

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
software_name = Supvisors Tests
software_icon = ../ui/img/icon.png
supvisors_list = cliche81,<cliche82>192.168.1.49,cliche83:60000:60001,cliche84
rules_files = ./etc/my_movies*.xml
stereotypes = @TEST
auto_fence = false
event_link = WS
event_port = 60002
synchro_timeout = 20
inactivity_ticks = 3
core_identifiers = cliche81,cliche82
disabilities_file = /tmp/disabilities.json
starting_strategy = CONFIG
conciliation_strategy = USER
stats_enabled = true
stats_periods = 5,60,600
stats_histo = 100
stats_irix_mode = false
tail_limit = 50MB
tailf_limit = 50MB
logfile = ./log/supvisors.log
logfile_maxbytes = 50MB

(continues on next page)

2.1. Supervisor’s Configuration File 15

http://supervisord.org/running.html#running-supervisorctl
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

logfile_backups = 10
loglevel = debug

[ctlplugin:supvisors]
supervisor.ctl_factory = supvisors.supvisorsctl:make_supvisors_controller_plugin

2.2 Supvisors’ Rules File

This part describes the contents of the XML rules files declared in the rules_files option.

Basically, a rules file contains rules that define how applications and programs should be started and stopped, and the
quality of service expected. It relies on the Supervisor group and program definitions.

Important: About the declaration of Supervisor groups/processes in a rules file

It is important to notice that all applications declared in this file will be considered as Managed by Supvisors. The
main consequence is that Supvisors will try to ensure that one single instance of the program is running over all the
Supvisors instances considered. If two instances of the same program are running in two different Supvisors instances,
Supvisors will consider this as a conflict. Only the Managed applications have an entry in the navigation menu of the
Supvisors Web UI.

The groups declared in Supervisor configuration files and not declared in a rules file will thus be considered as Unman-
aged by Supvisors. So they have no entry in the navigation menu of the Supvisors web page. There can be as many
running instances of the same program as Supervisor allows over the available Supvisors instances.

If the lxml package is available on the system, Supvisors uses it to validate the XML rules files before they are used.

Hint: It is still possible to validate the XML rules files manually. The XSD file rules.xsd used to validate the XML
can be found in the Supvisors package. Just use xmllint to validate:

[bash] > xmllint --noout --schema rules.xsd user_rules.xml

2.2.1 <application> rules

Here follows the definition of the attributes and rules applicable to an application element.

name

This attribute gives the name of the application. The name MUST match a Supervisor group name.

Default: None.

Required: Yes, unless a pattern attribute is provided.

pattern

A regex matching one or more Supervisor group names is expected in this attribute. Refer to Using patterns
for more details.

Default: None.

Required: Yes, unless a name attribute is provided.

16 Chapter 2. Configuration

http://supervisord.org
http://supervisord.org
http://supervisord.org
https://lxml.de
http://supervisord.org/configuration.html#group-x-section-settings
http://supervisord.org


Supvisors, Release 0.18

Note: The options below can be declared in any order in the application section.

distribution

In the introduction, it is written that the aim of Supvisors is to manage distributed applications. However,
it may happen that some applications are not designed to be distributed (for example due to inter-process
communication design) and thus distributing the application processes over multiple nodes would just
make the application non operational. If set to ALL_INSTANCES, Supvisors will distribute the application
processes over the applicable Supvisors instances. If set to SINGLE_INSTANCE, Supvisors will start all the
application processes in the same Supvisors instance. If set to SINGLE_NODE, Supvisors will distribute
all the application processes over a set of Supvisors instances running on the same node.

Default: ALL_INSTANCES.

Required: No.

Note: When a single Supvisors instance is running on each node, SINGLE_INSTANCE and SINGLE_NODE are strictly
equivalent.

identifiers

This element is only used when distribution is set to SINGLE_INSTANCE or SINGLE_NODE and gives
the list of Supvisors instances where the application programs can be started.

The names are to be taken either the names deduced from the supvisors_list option defined in rpcinter-
face extension point, and / or from the declared Instance aliases, and / or or from a stereotype as provided
in the stereotypes option, and separated by commas.

Special values can be used. The wildcard symbol * stands for all names deduced from supvisors_list.
Any name list including a * is strictly equivalent to * alone.

The hashtag symbol # can be used with a pattern definition and eventually complemented by a list of
deduced names. The aim is to assign the Nth deduced name of supvisors_list or the Nth name of
the subsequent list (made of names deduced from supvisors_list) to the Nth instance of the applica-
tion, assuming that ‘N’ is provided at the end of the application name, preceded by a dash or an
underscore. Yeah, a bit tricky to explain. . . Examples will be given in Using patterns and signs.

Default: *.

Required: No.

Attention: When the distribution of the application is restricted (distribution not set to ALL_INSTANCES), the
rule identifiers of the application programs is not considered.

start_sequence

This element gives the starting rank of the application in the DISTRIBUTION state, when applications are
started automatically. When <= 0, the application is not started. When > 0, the application is started in
the given order.

Default: 0.

Required: No.

stop_sequence

2.2. Supvisors’ Rules File 17



Supvisors, Release 0.18

This element gives the stopping rank of the application when all applications are stopped just before
Supvisors is restarted or shut down. This value must be positive. If not set, it is defaulted to the
start_sequence value. Supvisors stops the applications sequentially from the greatest rank to the low-
est.

Default: start_sequence value.

Required: No.

Attention: The stop_sequence is not taken into account:

• when calling Supervisor’s restart or shutdown XML-RPC,

• when stopping the supervisord daemon.

It only works when calling Supvisors’ restart or shutdown XML-RPC.

starting_strategy

The strategy used to start applications on Supvisors instances. Possible values are in { CONFIG,
LESS_LOADED, MOST_LOADED, LOCAL }. The use of this option is detailed in Starting strategy.

Default: the value set in the rpcinterface extension point of the Supervisor configuration file.

Required: No.

starting_failure_strategy

This element gives the strategy applied upon a major failure, i.e. happening on a required process, in the
starting phase of an application. The possible values are { ABORT, STOP, CONTINUE } and are detailed in
Starting Failure strategy.

Default: ABORT.

Required: No.

running_failure_strategy

This element gives the strategy applied when the application loses running processes due to a Supvisors
instance that becomes silent (crash, power down, network failure, etc). This value can be superseded by the
value set at program level. The possible values are { CONTINUE, RESTART_PROCESS, STOP_APPLICATION,
RESTART_APPLICATION, SHUTDOWN, RESTART } and are detailed in Running Failure strategy.

Default: CONTINUE.

Required: No.

operational_status

This element contains the formula that will be used to evaluate the operational status of the application,
displayed in the Supvisors Web UI, and has no other impact on any Supvisors function. The formula
will be parsed using the Python module AST. The exhaustive list of operators and functions supported by
Supvisors is: and, or, not, any and all. Parenthesis can also be used. The operands must be string
values, between quotes or double-quotes, corresponding to a program name of the application, or a pattern
matching one or multiple program names. Multiple program names must be used as an argument of any
or all. When set, the required value of the programs elements is not considered.

Default: None.

Required: No.

programs

18 Chapter 2. Configuration

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

This element is the grouping section of all program rules that are applicable to the application. Obviously,
the programs element of an application can include multiple program elements.

Default: None.

Required: No.

program

In a programs section, this element defines the rules that are applicable to the program whose name
matches the name or pattern attribute of the element. The name must match exactly a program name in
the program list of the Supervisor group definition for the application considered here.

Default: None.

Required: No.

2.2.2 <program> rules

The program element defines the rules applicable to at least one program. This element must be included in an
programs element. Here follows the definition of the attributes and rules applicable to this element.

Note: The options below can be declared in any order in the program section.

name

This attribute MUST match exactly the name of a program as defined in Supervisor program settings.

Default: None.

Required: Yes, unless an attribute pattern is provided.

pattern

A regex matching one or more Supervisor program names is expected in this attribute. Refer to the Using
patterns for more details.

Default: None.

Required: Yes, unless an attribute name is provided.

identifiers

This element gives the list of Supvisors instances where the program can be started.

The names are separated by commas and have to be taken from:

• either the names declared in the supvisors_list option defined in the rpcinterface extension point,

• and / or the declared Instance aliases,

• and / or a stereotype provided in the stereotypes option.

Special values can be applied. The wildcard symbol * stands for all names deduced from
supvisors_list. Any name list including a * is strictly equivalent to * alone.

The hashtag symbol # and the at symbol @ can be used with a pattern definition and eventually comple-
mented by a list of deduced names. The aim is to assign the Nth deduced name of supvisors_list or
the Nth name of the subsequent list (made of names deduced from supvisors_list) to the Nth instance
of the program in a homogeneous process group. Examples will be given in Using patterns and signs.

Default: *.

Required: No.

2.2. Supvisors’ Rules File 19

http://supervisord.org/configuration.html#group-x-section-settings
http://supervisord.org/configuration.html#program-x-section-settings
http://supervisord.org


Supvisors, Release 0.18

required

This element gives the importance of the program for the application. If true (resp. false), a fail-
ure of the program is considered major (resp. minor). When the operational_status element of the
application element is set, this element is ignored. This information is mainly used to give the opera-
tional status of the application in the Web UI and has no other impact on any Supvisors function.

Default: false.

Required: No.

start_sequence

This element gives the starting rank of the program when the application is starting. When <= 0, the
program is not started automatically. When > 0, the program is started automatically in the given order.

Default: 0.

Required: No.

stop_sequence

This element gives the stopping rank of the program when the application is stopping. This value must be
positive. If not set, it is defaulted to the start_sequence value. Supvisors stops the processes sequen-
tially from the greatest rank to the lowest.

Default: start_sequence value.

Required: No.

wait_exit

If the value of this element is set to true, Supvisors waits for the process to exit before starting the next
sequence. This may be particularly useful for scripts used to load a database, to mount disks, to prepare
the application working directory, etc.

Default: false.

Required: No.

expected_loading

This element gives the expected percent usage of resources. The value is a estimation and the meaning in
terms of resources (CPU, memory, network) is in the user’s hands. When multiple Supvisors instances
are available, Supvisors uses the expected_loading value to distribute the processes over the available
Supvisors instances, so that the system remains safe.

Default: 0.

Required: No.

Note: About the choice of an user estimation

Although Supvisors may be taking measurements on each node where it is running, it has been chosen not
to use these figures for the loading purpose. Indeed, the resources consumption of a process may be very
variable in time and is not foreseeable. It is recommended to give a value based on an average usage of the
resources in the worst case configuration and to add a margin corresponding to the standard deviation.

starting_failure_strategy

This element gives the strategy applied upon a major failure, i.e. happening on a required process, in the
starting phase of an application. This value supersedes the value eventually set at application level. The
possible values are { ABORT, STOP, CONTINUE } and are detailed in Starting Failure strategy.

20 Chapter 2. Configuration



Supvisors, Release 0.18

Default: ABORT.

Required: No.

running_failure_strategy

This element gives the strategy applied when the process is running in a Supvisors instance that be-
comes silent (crash, power down, network failure, etc). This value supersedes the value eventually set
at application level. The possible values are { CONTINUE, RESTART_PROCESS, STOP_APPLICATION,
RESTART_APPLICATION, SHUTDOWN, RESTART } and their impact is detailed in Running Failure strategy.

Default: CONTINUE.

Required: No.

reference

This element gives the name of an applicable model, as defined in <model> rules.

Default: None.

Required: No.

Note: About referencing models

The reference element can be combined with all the other elements described above. The rules got from
the referenced model are loaded first and then eventually superseded by any other rule defined in the same
program section. A model can reference another model. In order to prevent infinite loops and to keep
a reasonable complexity, the maximum chain starting from the program section has been set to 3. As a
consequence, any rule may be superseded twice at a maximum.

Here follows an example of a program definition:

<program name="prg_00">
<identifiers>cliche01,cliche03,cliche02</identifiers>
<required>true</required>
<start_sequence>1</start_sequence>
<stop_sequence>1</stop_sequence>
<wait_exit>false</wait_exit>
<expected_loading>3</expected_loading>
<running_failure_strategy>RESTART_PROCESS</running_failure_strategy>

</program>

2.2.3 Using patterns

It may be quite tedious to give all this information to every programs, especially if multiple programs use a common
set of rules. So two mechanisms are put in place to help.

The first one is the pattern attribute that may be used instead of the name attribute in a program element. It can be
used to configure a set of programs in a more flexible way than just considering homogeneous programs, like Supervisor
does.

The same program options are applicable, whatever a name attribute or a pattern attribute is used. For a pattern
attribute, a regex (or a simple substring) matching one Supervisor program name or more is expected.

<program pattern="prg_">
<identifiers>cliche01,cliche03,cliche02</identifiers>

(continues on next page)

2.2. Supvisors’ Rules File 21

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

<start_sequence>2</start_sequence>
<required>true</required>

</program>

Attention: About the pattern names.

Precautions must be taken when using a pattern definition. In the previous example, the rules are applica-
ble to every program names containing the "prg_" substring, so that it matches prg_00, prg_dummy, but also
dummy_prg_2.

As a general rule when looking for program rules, Supvisors always searches for a program definition having
the exact program name set in the name attribute, and only if not found, Supvisors tries to find a corresponding
program definition with a matching pattern.

It also may happen that multiple patterns match the same program name. In this case, Supvisors chooses the pattern
with the greatest matching, or arbitrarily the first of them if such a rule does not discriminate enough. So considering
the program prg_00 and the two matching patterns prg and prg_, Supvisors will apply the rules related to prg_.

The pattern attribute can be applied to application elements too. The same logic as per program elements applies.
This is particularly useful in a context where many users over multiple nodes need to have their own application.

Note: Supervisor does not provide support for homogeneous groups of heterogeneous programs. So in order to have
N running instances of the same application, the only possible solution is to define N times the Supervisor group using
a variation in the group name (e.g. an index suffix). It is however possible to include the same Supervisor program
definitions into different groups.

Unfortunately, using homogeneous program groups with numprocs set to N cannot help in the present case because
Supervisor considers the program name in the group and not the process_name.

2.2.4 Using patterns and signs

The hashtag symbol # and at symbol in the program identifiers are designed for a program that is meant to be
started on every Supvisors instances available, or on a subset of them.

As an example, based on the following simplified Supervisor configuration:

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
supvisors_list = cliche01,cliche02,cliche03,cliche04,cliche05

[program:prg]
process_name=prg_%(process_num)02d
numprocs=5
numprocs_start=1

Without this option, it is necessary to define rules for all instances of the program.

<program name="prg_01">
<identifiers>cliche01</identifiers>

</program>

(continues on next page)

22 Chapter 2. Configuration

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

<!-- similar definitions for prg_02, prg_03, prg_04 -->

<program name="prg_05">
<identifiers>cliche05</identifiers>

</program>

Now with this option, the rule becomes more simple.

<program pattern="prg_\d+">
<identifiers>#</identifiers>

</program>

It is also possible to give a subset of deduced names.

<program pattern="prg_\d+">
<identifiers>#,cliche04,cliche02</identifiers>

</program>

Note: Supvisors instances are chosen in accordance with the sequence given in supvisors_list or in the subsequent
list. In the second example above, prg_01 will be assigned to cliche04 and prg_02 to cliche02.

When using the Supvisors discovery mode is activated, the Supvisors instances are chosen in accordance with their
arrival in the system, which is random but fixed when established.

The start index defined in numprocs_start has no consequence.

Important: In the initial Supvisors design, it was expected that the numprocs value set in the program configuration
file would exactly match the number of Supvisors instances.

However, if the number of Supvisors instances is greater than the numprocs value, processes will be assigned to the
numprocs first Supvisors instances, with both # and @.

On the other side, if the number of Supvisors instances is lower than the numprocs value:

• when using @, one process will be assigned to each Supvisors instance, leaving the processes in excess unassigned
;

• when using #, all the processes will be equally assigned on the Supvisors instances.

Attention: As pointed out just before, Supvisors takes the information from the program configuration. So this
function will definitely NOT work if the program is unknown to the local Supervisor, which is a relevant use case.
As written before, the Supervisor configuration can be different for all Supvisors instances, including the definition
of groups and programs.

Important: Convention for application names when using patterns and signs

When the hashtag is used for the application identifiers, Supvisors cannot rely on the Supervisor configuration to
map the application instances to the Supvisors instances.

By convention, the application name MUST end with -N or _N. The Nth application will be mapped to the Nth deduced
name of the list, i.e. the name at index N-1 in the list.

2.2. Supvisors’ Rules File 23

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

N must be strictly positive. Zero-padding is allowed, as long as N can be converted into an integer.

2.2.5 <model> rules

The second mechanism is the model definition. The program rules definition is extended to a generic model, that can
be defined outside of the application scope, so that the same rules definition can be applied to multiple programs, in
any application.

The same options are applicable, including the reference option (recursion is yet limited to a depth of 2). There is
no particular expectation for the name attribute of a model.

Here follows an example of model:

<model name="X11_model">
<identifiers>cliche01,cliche02,cliche03</identifiers>
<start_sequence>1</start_sequence>
<required>false</required>
<wait_exit>false</wait_exit>

</model>

Here follows examples of program definitions referencing a model:

<program name="xclock">
<reference>X11_model</reference>

</program>

<program pattern="prg">
<reference>X11_model</reference>
<!-- prg-like programs have the same rules as X11_model, but with required=true-->
<required>true</required>

</program>

2.2.6 Instance aliases

When dealing with long lists of Supvisors instances, the content of application or program identifiers options may
impair the readability of the rules file. It is possible to declare instance aliases and to use the alias names in place of
the deduced names in the identifiers option.

Here follows a few usage examples:

<alias name="consoles">console01,console02,console03</alias>
<alias name="servers">server01,server02</alias>

<!-- working alias reference -->
<alias name="all_ok">servers,consoles</alias>

<model name="hci">
<identifiers>consoles</identifiers>

</model>

<model name="service">
(continues on next page)

24 Chapter 2. Configuration



Supvisors, Release 0.18

(continued from previous page)

<identifiers>servers,consoles</identifiers>
</model>

Hint: About aliases referencing other aliases

Based on the previous example, an alias referencing other aliases will only work if it is placed before the aliases
referenced.

At some point, the resulting names are checked against the names deduced from the supvisors_list parameter of
the rpcinterface extension point so any unknown name or remaining alias will simply be discarded.

<!-- Correct alias reference -->
<alias name="all_ok">servers,consoles</alias>

<alias name="consoles">console01,console02,console03</alias>
<alias name="servers">server01,server02</alias>

<!-- Wrong alias reference -->
<alias name="all_ko">servers,consoles</alias>

2.2.7 Rules File Example

Here follows a complete example of a rules file. It is used in Supvisors self tests.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<!-- aliases -->
<alias name="distribute_sublist">#,cliche82,cliche83:60000,cliche84</alias>
<alias name="consoles">cliche82,cliche81</alias>

<!-- models -->
<model name="disk_01">

<identifiers>cliche81</identifiers>
<expected_loading>5</expected_loading>

</model>

<model name="disk_02">
<reference>disk_01</reference>
<identifiers>cliche82</identifiers>

</model>

<model name="disk_03">
<reference>disk_01</reference>
<identifiers>cliche83:60000</identifiers>

</model>

<model name="converter">
<identifiers>*</identifiers>
<expected_loading>25</expected_loading>

(continues on next page)

2.2. Supvisors’ Rules File 25



Supvisors, Release 0.18

(continued from previous page)

</model>

<!-- import application -->
<application name="import_database">

<start_sequence>2</start_sequence>
<starting_failure_strategy>STOP</starting_failure_strategy>
<operational_status>all('.*')</operational_status>

<programs>
<program pattern="mount_disk_">

<identifiers>distribute_sublist</identifiers>
<start_sequence>1</start_sequence>
<required>true</required>
<expected_loading>0</expected_loading>

</program>

<program name="copy_error">
<identifiers>cliche81</identifiers>
<start_sequence>2</start_sequence>
<required>true</required>
<wait_exit>true</wait_exit>
<expected_loading>25</expected_loading>

</program>
</programs>

</application>

<!-- movies_database application -->
<application name="database">

<start_sequence>3</start_sequence>
<operational_status>all("register.*") and any('movie.*')</operational_status>

<programs>
<program pattern="movie_server_">

<identifiers>#</identifiers>
<start_sequence>1</start_sequence>
<expected_loading>5</expected_loading>
<running_failure_strategy>CONTINUE</running_failure_strategy>

</program>

<program pattern="register_movies_">
<identifiers>#,cliche81,cliche83:60000</identifiers>
<start_sequence>2</start_sequence>
<wait_exit>true</wait_exit>
<expected_loading>25</expected_loading>

</program>
</programs>

</application>

<!-- my_movies application -->
<application name="my_movies">

(continues on next page)

26 Chapter 2. Configuration



Supvisors, Release 0.18

(continued from previous page)

<start_sequence>4</start_sequence>
<starting_strategy>CONFIG</starting_strategy>
<starting_failure_strategy>CONTINUE</starting_failure_strategy>

<programs>
<program name="manager">

<identifiers>*</identifiers>
<start_sequence>1</start_sequence>
<stop_sequence>3</stop_sequence>
<required>true</required>
<expected_loading>5</expected_loading>
<running_failure_strategy>RESTART_APPLICATION</running_failure_strategy>

</program>

<program name="web_server">
<identifiers>cliche84</identifiers>
<start_sequence>2</start_sequence>
<required>true</required>
<expected_loading>3</expected_loading>

</program>

<program name="hmi">
<identifiers>consoles</identifiers>
<start_sequence>3</start_sequence>
<stop_sequence>1</stop_sequence>
<expected_loading>10</expected_loading>
<running_failure_strategy>STOP_APPLICATION</running_failure_strategy>

</program>

<program pattern="disk_01_">
<reference>disk_01</reference>

</program>

<program pattern="disk_02_">
<reference>disk_02</reference>

</program>

<program pattern="disk_03_">
<reference>disk_03</reference>

</program>

<program pattern="error_disk_">
<reference>disk_01</reference>
<identifiers>*</identifiers>

</program>

<program name="converter_04">
<reference>converter</reference>
<identifiers>cliche83:60000,cliche81,cliche82</identifiers>

</program>

<program name="converter_07">
(continues on next page)

2.2. Supvisors’ Rules File 27



Supvisors, Release 0.18

(continued from previous page)

<reference>converter</reference>
<identifiers>cliche81,cliche83:60000,cliche82</identifiers>

</program>

<program pattern="converter_">
<reference>converter</reference>

</program>
<programs>

</application>

<!-- player application -->
<application name="player">

<distribution>SINGLE_INSTANCE</distribution>
<identifiers>cliche81,cliche83:60000</identifiers>
<start_sequence>5</start_sequence>
<starting_strategy>MOST_LOADED</starting_strategy>
<starting_failure_strategy>ABORT</starting_failure_strategy>

<programs>
<program name="test_reader">

<start_sequence>1</start_sequence>
<required>true</required>
<wait_exit>true</wait_exit>
<expected_loading>2</expected_loading>

</program>

<program name="movie_player">
<start_sequence>2</start_sequence>
<expected_loading>13</expected_loading>

</program>
</programs>

</application>

<!-- web_movies application -->
<application pattern="web_">

<start_sequence>6</start_sequence>
<stop_sequence>2</stop_sequence>
<starting_strategy>LESS_LOADED</starting_strategy>

<programs>
<program name="web_browser">

<identifiers>*</identifiers>
<start_sequence>1</start_sequence>
<expected_loading>4</expected_loading>
<running_failure_strategy>RESTART_PROCESS</running_failure_strategy>

</program>
</programs>

</application>

(continues on next page)

28 Chapter 2. Configuration



Supvisors, Release 0.18

(continued from previous page)

<!-- disk_reader_81 application -->
<application name="disk_reader_81">

<start_sequence>1</start_sequence>
</application>

</root>

2.2. Supvisors’ Rules File 29



Supvisors, Release 0.18

30 Chapter 2. Configuration



CHAPTER

THREE

DASHBOARD

Each Supervisor instance provides a Web Server and the Supvisors extension provides its own Web User Interface, as
a replacement of the Supervisor one but using the same infrastructure.

Note: The information displayed in the Web User Interface is a synthesis of the information provided by all Supvisors
instances and as perceived by the Supvisors instance that displays the web pages.

Important: About the browser compliance.

The CSS of the web pages has been written for Firefox ESR 91.3.0. The compatibility with other browsers or other
versions of Firefox is unknown.

All pages are divided into 3 parts:

• the Common Menu on the left side ;

• a header on the top right ;

• the content itself on the lower right.

3.1 Common Menu

3.1.1 Supvisors

Generally, clicking on the ‘Supvisors’ title brings the Main page back.

There is an exception when conflicts are detected. In this case, a red light is blinking next to the Supvisors logo and
clicking on it displays the Conciliation page.

The version of Supvisors is displayed underneath.

31

http://supervisord.org
http://supervisord.org/introduction.html#supervisor-components
http://supervisord.org


Supvisors, Release 0.18

Fig. 1: Common Menu
32 Chapter 3. Dashboard



Supvisors, Release 0.18

3.1.2 Supervisors

Below the Supvisors logo is the Supervisors part that lists all the Supvisors instances defined in the rpcinterface
extension point of the Supervisor configuration file. The color gives the state of the Supvisors instance:

• grey for UNKNOWN ;

• grey-to-green gradient for CHECKING ;

• yellow for SILENT ;

• green for CHECKED and RUNNING ;

• red for ISOLATED.

The Supvisors instance is blinking when it is handling starting or stopping jobs.

An additional red light is displayed in the event where a process is in a crash state (FATAL or unexpectedly EXITED).

Only the hyperlinks of the CHECKED and RUNNING Supvisors instances are active. The browser is redirected to the
Supervisor page of the targeted Supvisors instance.

The Supvisors instance playing the role of Master is pointed out with the symbol.

3.1.3 Applications

Below is the Applications part that lists all the Managed applications defined through the group sections of the Su-
pervisor configuration file and also declared in the Supvisors Supvisors’ Rules File. The color gives the state of the
Application, as seen by the Supvisors instance that is displaying this page:

• yellow for STOPPED ;

• yellow-to-green gradient for STARTING ;

• green-to-yellow gradient for STOPPING ;

• green for RUNNING.

The application is blinking when it is part of the starting or stopping jobs managed by the local Supvisors instance.

An additional red light is displayed in the event where a failure has been raised on the application.

All hyperlinks are active. The browser is redirected to the corresponding Application page on the local Web Server.

3.1.4 Copyright

The bottom part of the menu contains a contact link to the Supvisors owner and maintainer and a copyright information.

3.2 Common footer

The bottom part of all pages displays two information areas:

• the acknowledgement area, used to print the result of the actions requested from the buttons of the Web UI ;

• the time when the page has been generated, and the Supvisors instance that provided the page.

Depending on the result, the acknowledgement area may have a different background color:

• grey by default, when no action is pending ;

• blue for a successful result ;

3.2. Common footer 33

http://supervisord.org
http://supervisord.org/configuration.html#group-x-section-settings
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

• amber when an action could not be performed but when the result is already as expected (e.g. a process is already
started) ;

• amber too as an acknowledgement of an action having a major impact (e.g. a shutdown or a restart) ;

• red in the event of an error (e.g. start / stop failed).

3.3 Main Page

The Main Page shows a synoptic of the Supvisors status.

Fig. 2: Supvisors Main page

3.3.1 Main Page Header

A first card on the left of the header may be displayed with the user software name and icon, if those are set in the
Supvisors section of the Supervisor configuration file.

The next card provides the Supvisors state and is displayed at the center of the header:

OFF

This is the Supvisors starting phase. It is very transient and corresponds to the phase between the moment
when Supervisor is started and the moment when it sends the running event to its listeners.

INITIALIZATION

In this state, Supvisors waits for all Supvisors instances to connect themselves. Refer to the Synchronizing
Supvisors instances section for more details.

In this state, the Supvisors XML-RPC API is restricted so that only version, master and Supvisors instance
information are available.

DISTRIBUTION

34 Chapter 3. Dashboard

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

In this state, Supvisors is automatically starting applications. Refer to the Starting strategy section for
more details.

The whole Status part and the Supvisors Control part of the Supvisors XML-RPC API are available from
this state.

OPERATION

In this state, Supvisors is mainly:

• listening to Supervisor events ;

• publishing the events on its Event interface ;

• checking the activity of all remote Supvisors instances ;

• detecting eventual multiple running instances of the same program ;

• providing statistics to its Dashboard.

The whole Supvisors XML-RPC API is available in this state.

CONCILIATION

This state is reached when Supvisors has detected multiple running instances of the same program. Supvi-
sors is either solving conflicts itself or waiting for the user to do it. Refer to the Conciliation section for
more details.

The Supvisors XML-RPC API is restricted in this state. It is possible to stop applications and processes
but the start requests are rejected.

RESTARTING

Supvisors is stopping all processes before commanding its own restart, i.e. the restart of all Supvisors
instances including a restart of their related Supervisor. Refer to the Stopping strategy section for more
details.

The Supvisors XML-RPC API is NOT available in this state.

SHUTTING_DOWN

Supvisors is stopping all processes before commanding its own shutdown, i.e. the shutdown of all Supvi-
sors instances including a restart of their related Supervisor. Refer to the Stopping strategy section for
more details.

The Supvisors XML-RPC API is NOT available in this state.

FINAL

This is the final state of Supvisors, in which it remains inactive and waits for the Supervisor stopping
event. This state is very transient too.

The Supvisors XML-RPC API is NOT available in this state.

The Supvisors modes are displayed alongside the state if activated:

starting

This mode is visible and blinking when the Starter of any of the Supvisors instances has jobs in progress.

stopping

This mode is visible and blinking when the Stopper of any of the Supvisors instances has jobs in progress.

On the right side, 5 buttons are available:

3.3. Main Page 35

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

• ends the Supvisors synchronization phase (only when Supvisors is in INITIALIZATION state and
USER is set in the synchro_options option) ;

• restarts Supvisors through all Supvisors instances ;

• shuts down Supvisors through all Supvisors instances ;

• refreshes the current page ;

• refreshes the current page and sets a periodic 5s refresh to the page.

3.3.2 Main Page Contents

For every Supvisors instances, a card is displayed in the contents of the Supvisors Main Page. Each box contains:

• (on condition) a star button allowing the user to ends the Supvisors synchronization phase and forcing
the corresponding Supvisors instance as Master (only when Supvisors is in INITIALIZATION state and USER
is set in the synchro_options option);

• the Supvisors instance nick name, as a hyperlink to the corresponding Supervisor Page if the Supvisors instance
is in the CHECKED or the RUNNING state ;

• the Supvisors instance state, colored with the same rules used in the Common Menu ;

• the Supvisors instance process loading ;

• the list of all processes that are running in this Supvisors instance, whatever they belong to a Managed application
or not.

3.4 Conciliation Page

If the page is refreshed when Supvisors is in CONCILIATION state, a red light is blinking next to the ‘Supvisors’ title
in the top left of the Common Menu.

This situation is unlikely to happen if the conciliation_strategy chosen in the rpcinterface extension point of
the Supervisor configuration file is different from USER, as the other values will trigger an immediate and automatic
conciliation of the conflicts.

The Conciliation Page can be reached by clicking on the ‘Supvisors’ title when the red blinking light is displayed.

36 Chapter 3. Dashboard

http://supervisord.org


Supvisors, Release 0.18

Fig. 3: Supvisors Main page with USER sync

Fig. 4: Supvisors Conciliation page

3.4. Conciliation Page 37



Supvisors, Release 0.18

3.4.1 Conciliation Page Header

The header of the Conciliation Page has exactly the same contents as the header of the Main page.

3.4.2 Conciliation Page Contents

On the right side of the page, the list of process conflicts is displayed into a table. A process conflict is raised when the
same program is running in multiple Supvisors instances.

So the table lists, for each conflict:

• the name of the program incriminated ;

• the list of Supvisors instances where it is running ;

• the uptime of the corresponding process in each Supvisors instance ;

• for each process, a list of actions helping to the solving of this conflict:

– Stop the process ;

– Keep this process (and stop all others) ;

• for each process, a list of automatic strategies (refer to Conciliation) helping to the solving of this conflict.

The left side of the page contains a simple box that enables the user to perform a global conciliation on all conflicts,
using one of the automatic strategies proposed by Supvisors.

3.5 Supervisor Page

The Supervisor Page of Supvisors is the page that most closely resembles the legacy Supervisor page, hence its name,
although it is a bit less “sparse” than the web page provided by Supervisor. It shows the status of the Supvisors
instance, as seen by the Supvisors instance itself as this page is always re-directed accordingly. It also enables the user
to command the processes declared in this Supvisors instance and provides statistics that may be useful at software
integration time.

3.5.1 Supervisor Page Header

A first card on the left of the header may be displayed with the user software name and icon, if those are set in the
Supvisors section of the Supervisor configuration file.

The status of the Supvisors instance is then displayed:

• the Supvisors instance deduced name, marked with the sign if it is the Master ;

• the current loading of the processes running in this Supvisors instance ;

• the Supvisors instance state and modes (discovery, starting, stopping).

Note: The discovery mode is displayed when the Supvisors multicast interface is activated.

Note: The Supvisors instance modes are visible and blinking when the Starter or the Stopper of the considered
Supvisors instance has jobs in progress. It doesn’t mean that a process is starting or stopping in the local Supervisor. It

38 Chapter 3. Dashboard

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

means that the Supvisors instance is managing a start or a stop sequence, which could lead to processes being started
or stopped on any other Supervisor instance managed by Supvisors.

The ‘Statistics View’ card enables the user to choose the information presented on this page. By default, the Processes
Section is displayed. The other choice is the Host Section. The Host button is named after the name of the node hosting
the Supvisors instance. The periods can be updated in the rpcinterface extension point of the Supervisor configuration
file.

Next to it, the ‘Statistics Period’ box enables the user to choose the period used for the statistics of this page. The
periods can be updated in the rpcinterface extension point of the Supervisor configuration file.

Note: These two boxes are not displayed if the optional module psutil is not installed or if the statistics are disabled
through the stats_enabled option of the rpcinterface extension point of the Supervisor configuration file.

On the right side, 5 buttons are available:

• stops all the processes handled by Supervisor in this Supvisors instance ;

• restarts this Supvisors instance, including Supervisor ;

• shuts down this Supvisors instance, including Supervisor ;

• refreshes the current page ;

• refreshes the current page and sets a periodic 5s refresh to the page.

3.5.2 Processes Section

The Processes Section looks like the page provided by Supervisor. Indeed, it lists the programs that are configured in
Supervisor, it presents their current state with an associated description and enables the user to perform some actions
on them:

• Log tail (with a refresh button, click on the program name itself) ;

• Start ;

• Stop ;

• Restart ;

• Clear log ;

• Tail stdout log (auto-refreshed) ;

• Tail stderr log (auto-refreshed).

The activation of the Start, Stop and Restart buttons is depending on the process state. In addition to that, a stopped
process cannot be started if the the corresponding program has been disabled.

3.5. Supervisor Page 39

http://supervisord.org
http://supervisord.org
http://supervisord.org
https://pypi.python.org/pypi/psutil
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

Fig. 5: Supvisors Processes page

The activation of the Clear, Stdout and Stderr buttons is depending on the configuration of the stdout_logfile and
stderr_logfile options of the Supervisor program configuration.

Supvisors shows additional information for each process, such as:

• the loading declared for the process in the rules file ;

• the CPU usage of the process during the last period (only if the process is RUNNING) ;

• the instant memory (Resident Set Size) occupation of the process at the last period tick (only if the process is
RUNNING).

Note: CPU usage and memory are available only if the optional module psutil is installed and if the statistics are not
disabled through the stats_enabled option of the rpcinterface extension point of the Supervisor configuration file.

Here is the color code used for process states:

• grey if the process state is UNKNOWN or if the process is disabled ;

• yellow if the process is STOPPED or expectedly EXITED ;

• yellow-green gradient if the process is STARTING or BACKOFF ;

• green if the process is RUNNING ;

• green-yellow gradient if the process is STOPPING ;

• red if the process is FATAL or unexpectedly EXITED.

Note: For RUNNING processes, the color code used is a bit different if the process has ever crashed since Supvisors
has been started. The aim is to inform that process logs should be consulted.

40 Chapter 3. Dashboard

http://supervisord.org
https://pypi.python.org/pypi/psutil
http://supervisord.org


Supvisors, Release 0.18

‘standard’ RUNNING process RUNNING process with a crash history

All processes are grouped by their application name and Supvisors provides expand / shrink actions per application to
enable the user to show / hide blocks of processes. Global expand / shrink actions are provided too in the top left cell
of the table.

Considering the application processes that are running in this Supvisors instance, the application line displays:

• the sum of their expected loading ;

• the sum of their CPU usage ;

• the sum of their instant memory occupation.

The following actions are also provided and apply to all application processes:

• Start (equivalent to supervisorctl start group:*) ;

• Stop (equivalent to supervisorctl stop group:*);

• Restart (a multicall chaining stop group:* and start group:*).

Hint: These actions are an implementation of the following Supervisor unresolved issue:

• #1504 - Web interface: Add stop group Action

A click on the CPU or RAM measures shows detailed statistics about the process. This is not active on the application
values. More particularly, Supvisors displays on the right side of the page a table showing for both CPU and Memory:

• the last measure ;

• the mean value ;

• the value of the linear regression slope (unit is percent per period) ;

• the value of the standard deviation.

A color and a sign are associated to the last value, so that:

• green and point out an increase of the value since the last measure ;

• red and point out a decrease of the value since the last measure ;

• blue and point out the stability of the value since the last measure.

Underneath, Supvisors shows two graphs (CPU and Memory) built from the series of measures taken from the selected
process:

• the history of the values with a plain line ;

• the mean value with a dashed line and value in the top right corner ;

• the linear regression with a straight dotted line ;

• the standard deviation with a colored area around the mean value.

3.5. Supervisor Page 41

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/1504


Supvisors, Release 0.18

3.5.3 Host Section

Fig. 6: Supvisors Host page

The Host Section contains CPU, Memory and Network statistics for the considered node.

The CPU table shows statistics about the CPU on each core of the processor and about the average CPU of the processor.

The Memory table shows statistics about the amount of used (and not available) memory.

The Network table shows statistics about the receive and sent flows on each network interface.

Note: A space is left for future growth and is intended to display statistics about disk usage.

Clicking on a button associated to the resource displays detailed statistics (graph and table), similarly to the process
buttons.

3.6 Application Page

The Application Page of Supvisors:

• shows the status of the managed application, as seen by the considered Supvisors instance ;

• enables the user to command the application and its processes ;

• provides statistics that may be useful at software integration time.

42 Chapter 3. Dashboard



Supvisors, Release 0.18

Fig. 7: Supvisors Application page

3.6.1 Application Page Header

As per the other pages, a first card on the left of the header may be displayed with the user software name and icon.

The status of the Application is displayed on the left side of the header, including:

• the name of the application ;

• the state of the application ;

• a led corresponding to the operational status of the application:

– empty if not RUNNING ;

– red if RUNNING and at least one major failure is detected ;

– orange if RUNNING and at least one minor failure is detected, and no major failure ;

– green if RUNNING and no failure is detected.

The Application operational status is evaluated against the status_formula or the required options eventually
provided in the rules file.

The next part of the header is the ‘Starting strategy’ box that enables the user to choose the strategy to start the appli-
cation programs listed below.

Strategies are detailed in Starting strategy.

Then follows the ‘Statistics Period’ box that enables the user to choose the period used for the statistics of this page.
The periods can be updated in the rpcinterface extension point of the Supervisor configuration file.

On the right side, 4 buttons are available:

• starts the application ;

3.6. Application Page 43

http://supervisord.org


Supvisors, Release 0.18

• stops the application ;

• restarts the application ;

• refreshes the current page ;

• refreshes the current page and sets a periodic 5s refresh to the page.

3.6.2 Application Page Contents

The table lists all the programs belonging to the application, and it shows:

• the ‘synthetic’ state of the process (refer to this note for details about the synthesis) ;

• the Supvisors instances where it runs, if appropriate ;

• the description (after initialization from Supervisor, the nick name of the corresponding Supvisors instance is
added depending on the state) ;

• the loading declared for the process in the rules file ;

• the CPU usage of the process during the last period (only if the process is RUNNING) ;

• the instant memory (Resident Set Size) occupation of the process at the last period tick (only if the process is
RUNNING).

Like the Supervisor page, the Application page enables the user to perform some actions on programs:

• Start ;

• Stop ;

• Restart ;

• Clear log ;

• Tail stdout log (auto-refreshed) ;

• Tail stderr log (auto-refreshed).

The difference is that the process is not started necessarily in the Supvisors instance that displays this page. Indeed,
Supvisors uses the rules of the program (as defined in the rules file) and the starting strategy selected in the header
part to choose a relevant Supvisors instance. If no rule is defined for the program, the Start button will be disabled.

The availability of the logs is not tested in this page.

As previously, a click on the CPU or Memory measures shows detailed statistics about the process. And unlike the
Supervisor page, statistics information are not hidden in this page because they may have been collected on the other
nodes (due to a different configuration) and thus can be made available here.

44 Chapter 3. Dashboard

http://supervisord.org


CHAPTER

FOUR

XML-RPC API

The Supvisors XML-RPC API is an extension of the Supervisor XML-RPC API. Detailed information can be found
in the Supervisor XML-RPC API Documentation.

The supvisors namespace has been added to the supervisor XML-RPC interface.

The XML-RPC system.listMethods provides the list of methods supported for both Supervisor and Supvisors.

server.supvisors.getState()

Important: In the following, the namespec refers to the full name of the program, including the group name, as
defined in Supervisor. For example: in X11:xclock, X11 is the name of a Supervisor group and xclock is the name
of a Supervisor program that is referenced in the group. In some cases, it can also refer to all the programs of the group
(X11:*).

4.1 Status

class supvisors.rpcinterface.RPCInterface(supvisors: Any)
This class holds the XML-RPC extension provided by Supvisors.

get_api_version()

Return the version of the RPC API used by Supvisors.
Returns

the Supvisors version.
Return type

str

get_supvisors_state()

Return the state and modes of Supvisors. The Supvisors state is the FSM state and is a reflection
of the Supvisors Master instance state. The Supvisors modes provides the identifiers of the
Supvisors instances having starting or stopping jobs in progress.

Returns
the state and modes of Supvisors.

Return type
dict[str, Any]

45

http://supervisord.org
http://supervisord.org/api.html#xml-rpc-api-documentation
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

Key Type Description
‘fsm_statecode’int The Supvisors state, in [0;9].
‘fsm_statename’str The Supvisors state as string, in ['OFF', 'INITIALIZATION',

'DISTRIBUTION', 'OPERATION', 'CONCILIATION', 'RESTARTING',
`'SHUTTING_DOWN', 'FINAL'].

‘dis-
cov-
ery_mode’

bool True if the Supvisors discovery mode is activated.

‘start-
ing_jobs’

list(str)The list of Supvisors instances having starting jobs in progress.

‘stop-
ping_jobs’

list(str)The list of Supvisors instances having stopping jobs in progress.

get_master_identifier()

Get the identification of the Supvisors instance elected as Supvisors Master.
Returns

the identifier of the Supvisors Master instance.
Return type

str

get_strategies()

Get the default strategies applied by Supvisors:
• auto-fencing: Supvisors instance isolation if it becomes inactive ;
• starting: used in the DISTRIBUTION state to start applications ;
• conciliation: used in the CONCILIATION state to conciliate conflicts.

Returns
a structure containing information about the strategies applied.

Return type
dict[str, Any]

Key Type Description
‘auto-
fencing’

bool The application status of the auto-fencing in Supvisors.

‘concilia-
tion’

str The conciliation strategy applied when Supvisors is in the
CONCILIATION state.

‘starting’ str The starting strategy applied when Supvisors is in the DISTRIBUTION
state.

get_instance_info(instance)
Get information about the Supvisors instances identified by identifier (Supvisors identifier,
Supervisor identifier or Supvisors stereotype).

This method can return multiple results if a Supvisors stereotype is used as parameter.
Parameters
identifier (str) – the identifier of the Supvisors instance where the Supervisor
daemon is running.

Returns
a structure containing information about the Supvisors instance.

Return type
list[dict[str, Any]].

46 Chapter 4. XML-RPC API



Supvisors, Release 0.18

Raises
RPCError – with code Faults.BAD_NAME if identifier is unknown to Supvisors.

Key Type Description
‘identifier’ str The Supvisors instance identifier (host:http_port).
‘nick_identifier’str The Supervisor instance identifier, or a copy of the Supvisors identifier

if not set.
‘node_name’ str The name of the node where the Supvisors instance is running.
‘port’ int The HTTP port of the Supvisors instance.
‘statecode’ int The Supvisors instance state, in [0;6].
‘statename’ str The Supvisors instance state as string, in ['UNKNOWN', 'CHECKING',

‘CHECKED’`, 'RUNNING', 'SILENT', 'ISOLATED'].
‘discov-
ery_mode’

bool True if the discovery mode is activated in the Supvisors instance.

‘re-
mote_sequence_counter’

int The remote TICK counter, i.e. the number of TICK events received
since the remote Supvisors instance is running.

‘re-
mote_mtime’

floatThe monotonic time received in the last heartbeat sent by the remote
Supvisors instance, in seconds since the remote host started.

‘re-
mote_time’

floatThe POSIX time received in the last heartbeat sent by the remote Supvi-
sors instance, in seconds and in the remote reference time.

‘lo-
cal_sequence_counter’

int The local TICK counter when the latest TICK was received from the
remote Supvisors instance.

‘lo-
cal_mtime’

floatThe monotonic time when the latest TICK was received from the remote
Supvisors instance, in seconds since the local host started.

‘lo-
cal_time’

floatThe POSIX time when the latest TICK was received from the remote
Supvisors instance, in seconds and in the local reference time.

‘loading’ int The sum of the expected loading of the processes running on the Supvi-
sors instance, in [0;100]%.

‘pro-
cess_failure’

bool True if one of the local processes has crashed or has exited unexpect-
edly.

‘fsm_statecode’int The Supvisors state as seen by the Supvisors instance, in [0;9].
‘fsm_statename’str The Supvisors state as string, in ['OFF', 'INITIALIZATION',

'DISTRIBUTION', 'OPERATION', 'CONCILIATION',
'RESTARTING', 'SHUTTING_DOWN', 'FINAL'].

‘start-
ing_jobs’

bool True if the Supvisors instance has starting jobs in progress.

‘stop-
ping_jobs’

bool True if the Supvisors instance has stopping jobs in progress.

get_all_instances_info()

Get information about all Supvisors instances.
Returns

a list of structures containing information about all Supvisors instances.
Return type

list[dict[str, Any]]

get_application_info(application_name)
Get information about an application named application_name.

Parameters
application_name (str) – the name of the application.

Returns
a structure containing information about the application.

Return type

4.1. Status 47

http://supervisord.org


Supvisors, Release 0.18

dict[str, Any]
Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE if Supvisors
is still in INITIALIZATION state ; Faults.BAD_NAME if application_name is un-
known to Supvisors.

Key Type Description
‘applica-
tion_name’

str The Application name.

‘statecode’ int The Application state, in [0;4].
‘statename’ str The Application state as string, in ['UNKNOWN', 'STOPPED',

'STARTING', 'STOPPING', 'RUNNING'].
‘ma-
jor_failure’

bool True if at least one required process is not started.

‘mi-
nor_failure’

bool True if at least one optional process could not be started.

get_all_applications_info()

Get information about all applications managed in Supvisors.
Returns

a list of structures containing information about all applications.
Return type

list[dict[str, Any]]
Raises
RPCError – with code SupvisorsFaults.BAD_SUPVISORS_STATE if Supvisors
is still in INITIALIZATION state.

get_process_info(namespec)
Get synthetic information about a process named namespec. It gives a synthetic status, based
on the process information coming from all running Supvisors instances.

Parameters
namespec (str) – the process namespec (name, group:name, or group:*).

Returns
a list of structures containing information about the processes.

Return type
list[dict[str, Any]]

Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE if Supvisors
is still in INITIALIZATION state ; Faults.BAD_NAME if namespec is unknown to
Supvisors.

48 Chapter 4. XML-RPC API



Supvisors, Release 0.18

Key Type Description
‘applica-
tion_name’

str The Application name the process belongs to.

‘pro-
cess_name’

str The Process name.

‘state-
code’

int The Process state, in {0, 10, 20, 30, 40, 100, 200, 1000}.

‘state-
name’

str The Process state as string, in ['STOPPED', 'STARTING', 'RUNNING',
'BACKOFF', 'STOPPING', 'EXITED', 'FATAL', 'UNKNOWN'].

‘ex-
pected_exit’

bool A status telling if the process has exited expectedly.

‘last_event_time’float The local monotonic time of the last event received for this process, in
seconds.

‘identi-
fiers’

list(str)The deduced names of all Supvisors instances where the process is
running.

‘ex-
tra_args’

str The extra arguments used in the command line of the process.

Hint: The ‘expected_exit’ status is an answer to the following Supervisor request:
• #763 - unexpected exit not easy to read in status or getProcessInfo

Note: If there is more than one element in the ‘identifiers’ list, a conflict is in progress.

get_all_process_info()

Get synthetic information about all processes.
Returns

a list of structures containing information about the processes.
Return type

list[dict[str, Any]]
Raises
RPCError – with code SupvisorsFaults.BAD_SUPVISORS_STATE if Supvisors
is still in INITIALIZATION state.

get_local_process_info(namespec)
Get local information about a process named namespec. It is a subset of supervisor.
getProcessInfo, used by Supvisors in INITIALIZATION state, and giving the extra argu-
ments of the process.

Parameters
namespec (str) – the process namespec (name, group:name).

Returns
a structure containing information about the process.

Return type
dict[str, Any]

Raises
RPCError – with code Faults.BAD_NAME if namespec is unknown to Supvisors.

4.1. Status 49

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/763


Supvisors, Release 0.18

Key Type Description
‘group’ str The Application name the process belongs to.
‘name’ str The Process name.
‘state’ int The Process state, in {0, 10, 20, 30, 40, 100, 200, 1000}.
‘start’ int The Process start date.
‘now’ float The Process current date.
‘pid’ int The UNIX process identifier.
‘startsecs’ int The configured duration between process STARTING and RUN-

NING.
‘stopwait-
secs’

int The configured duration between process STOPPING and
STOPPED.

‘pid’ int The UNIX process identifier.
‘extra_args’ str The extra arguments used in the command line of the process.
‘disabled’ bool A status telling if the process is disabled.

get_all_local_process_info()

Get information about all processes located on this Supvisors instance. It is a subset of
supervisor.getProcessInfo, used by Supvisors in INITIALIZATION state, and giving the
extra arguments of the process.

Returns
a list of structures containing information about the processes.

Return type
list[dict[str, Any]]

get_inner_process_info()

Get Supvisors internal information related to the processes corresponding to namespec and de-
clared on the Supvisors instance. Mainly used for debug purpose.

Parameters
• identifier (str) – the identifier of the Supvisors instance where the Supervisor

daemon is running.
• namespec (str) – the process namespec (name, group:name).

Returns
a structure containing information about the process.

Return type
list[dict[str, Any]]

Raises
• RPCError – with code Faults.BAD_NAME if identifier is unknown to Supvi-

sors.
• RPCError – with code Faults.BAD_NAME if namespec is unknown to Supvisors.
• RPCError – with code Faults.FAILED if no handshake has been done with
identifier.

get_all_inner_process_info()

Get Supvisors internal information related to the processes declared on the Supvisors instance.
Mainly used for debug purpose.

Parameters
identifier (str) – the identifier of the Supvisors instance where the Supervisor
daemon is running.

Returns
a list of structures containing information about the processes.

Return type
list[dict[str, Any]]

50 Chapter 4. XML-RPC API



Supvisors, Release 0.18

Raises
RPCError – with code Faults.BAD_NAME if identifier is unknown to Supvisors.

get_application_rules(application_name)
Get the rules used to start / stop the application named application_name.

Parameters
application_name (str) – the name of the application.

Returns
a structure containing the rules.

Return type
dict[str, Any]

Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE if Supvisors
is still in INITIALIZATION state ; Faults.BAD_NAME if application_name is un-
known to Supvisors.

Key Type Description
‘applica-
tion_name’

str The Application name.

‘man-
aged’

bool The Application managed status in Supvisors. When False, the follow-
ing attributes are not provided.

‘distribu-
tion’

str The distribution rule of the Application, in ['ALL_INSTANCES',
'SINGLE_INSTANCE', 'SINGLE_NODE'].

‘identi-
fiers’

list(str)The deduced names of all Supvisors instances where the non-fully
distributed Application processes can be started, provided only if
distribution is not ALL_INSTANCES.

‘start_sequence’int The Application starting rank when starting all applications, in [0;127].
‘stop_sequence’int The Application stopping rank when stopping all applications, in

[0;127].
‘start-
ing_strategy’

str The strategy applied when starting Application automatically,
in ['CONFIG', 'LESS_LOADED', 'MOST_LOADED', 'LOCAL',
'LESS_LOADED_NODE', 'MOST_LOADED_NODE'].

‘start-
ing_failure_strategy’

str The strategy applied when a process crashes in a starting Application, in
['ABORT', 'STOP', 'CONTINUE'].

‘run-
ning_failure_strategy’

str The strategy applied when a process crashes in a running Applica-
tion, in ['CONTINUE', 'RESTART_PROCESS', 'STOP_APPLICATION',
'RESTART_APPLICATION', 'SHUTDOWN', 'RESTART'].

‘sta-
tus_formula’

str The operational_status formula set in the Application rule.

get_process_rules(namespec)
Get the rules used to start / stop the process named namespec.

Parameters
namespec (str) – the process namespec (name, group:name, or group:*).

Returns
a list of structures containing the rules.

Return type
list[dict[str, Any]]

Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE if Supvisors
is still in INITIALIZATION state ; Faults.BAD_NAME if namespec is unknown to
Supvisors.

4.1. Status 51



Supvisors, Release 0.18

Key Type Description
‘applica-
tion_name’

str The Application name the process belongs to.

‘pro-
cess_name’

str The Process name.

‘identi-
fiers’

list(str)The deduced names of all Supvisors instances where the process can be
started.

‘start_sequence’int The Process starting rank when starting the related application, in
[0;127].

‘stop_sequence’int The Process stopping rank when stopping the related application, in
[0;127].

‘re-
quired’

bool The importance of the process in the application.

‘wait_exit’ bool True if Supvisors has to wait for the process to exit before triggering
the next starting phase.

‘loading’ int The Process expected loading when RUNNING, in [0;100]%.
‘run-
ning_failure_strategy’

str The strategy applied when a process crashes in a running applica-
tion, in ['CONTINUE', 'RESTART_PROCESS', 'STOP_APPLICATION',
'RESTART_APPLICATION', 'SHUTDOWN', 'RESTART'].

get_conflicts()

Get the conflicting processes among the managed applications.
Returns

a list of structures containing information about the conflicting processes.
Return type

list[dict[str, Any]]
Raises
RPCError – with code SupvisorsFaults.BAD_SUPVISORS_STATE if Supvisors
is still in INITIALIZATION state,

The returned structure has the same format as get_process_info(namespec).

4.2 Supvisors Control

class supvisors.rpcinterface.RPCInterface(supvisors: Any)
This class holds the XML-RPC extension provided by Supvisors.

change_log_level(level_param)

Change the logger level for the local Supvisors instance. If Supvisors logger is con-
figured as AUTO, this will impact the Supervisor logger too.

Parameters
level_param (Union[str, int]) – the new logger level, as a string or as a
value.

Returns
always True unless error.

Return type
bool

Raises
RPCError – with code Faults.INCORRECT_PARAMETERS if level_param is
unknown to Supervisor.

52 Chapter 4. XML-RPC API



Supvisors, Release 0.18

conciliate(strategy)
Apply the conciliation strategy only if Supvisors is in CONCILIATION state and if the
default conciliation strategy is USER (using other strategies would trigger an automatic
behavior that wouldn’t give a chance to this XML-RPC).

Parameters
strategy (ConciliationStrategies) – the strategy used to conciliate, as a
string or as a value.

Returns
True if conciliation is triggered, False when the conciliation strategy is USER.

Return type
bool

Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE if
Supvisors is not in state CONCILIATION ; Faults.INCORRECT_PARAMETERS
if strategy is unknown to Supvisors.

restart_sequence()

Triggers the whole starting sequence by going back to the DISTRIBUTION state.
Parameters
wait (bool) – if True, wait for Supvisors to reach the OPERATION state.

Returns
always True unless error.

Return type
bool

Raises
RPCError – with code SupvisorsFaults.BAD_SUPVISORS_STATE if Supvi-
sors is not in OPERATION state.

restart()

Stops all applications and restart Supvisors through all Supervisor daemons.
Returns

always True unless error.
Return type

bool
Raises
RPCError – with code `SupvisorsFaults.BAD_SUPVISORS_STATE if
Supvisors is still in state INITIALIZATION or has no Master instance to per-
form the request.

shutdown()

Stops all applications and shut down Supvisors through all Supervisor daemons.
Returns

always True unless error.
Return type

bool
Raises
RPCError – with code `SupvisorsFaults.BAD_SUPVISORS_STATE if
Supvisors is still in state INITIALIZATION or has no Master instance to per-
form the request.

4.2. Supvisors Control 53



Supvisors, Release 0.18

4.3 Supvisors Statistics Status and Control

class supvisors.rpcinterface.RPCInterface(supvisors: Any)
This class holds the XML-RPC extension provided by Supvisors.

get_statistics_status()

Get information about the statistics collection status in Supvisors:
• host_stats: True if the host statistics are collected ;
• process_stats: True if the process statistics are collected ;
• collecting_period: the minimum interval between 2 samples of the same statistics

type.

Returns
a structure containing information about the statistics collected.

Return type
dict[str, Any]

Key Type Description
‘host_stats’ bool The status of Host Statistics collection in Supvisors.
‘process_stats’ bool The status of Process Statistics collection in Supvisors.
‘collect-
ing_period’

float The minimum interval between 2 samples of the same
statistics type.

enable_host_statistics(enable_host)
Override the host statistics option for the local Supvisors instance.

Parameters
enable_host (bool) – if True/False and psutil installed, enable/disable host
statistics collection.

Returns
always True unless error.

Return type
bool

Raises
RPCError – with code SupvisorsFaults.NOT_INSTALLED if psutil is not
installed.

enable_process_statistics(enable_process)
Override the process statistics option for the local Supvisors instance.

Parameters
enable_process (bool) – if True/False and psutil installed, enable/disable
process statistics collection.

Returns
always True unless error.

Return type
bool

Raises
RPCError – with code SupvisorsFaults.NOT_INSTALLED if psutil is not
installed.

update_collecting_period(collecting_period)
Override the statistics period option for the local Supvisors instance.

54 Chapter 4. XML-RPC API



Supvisors, Release 0.18

Parameters
collecting_period (float) – the minimum interval between 2 samples of
the same statistics type.

Returns
always True unless error.

Return type
bool

Raises
RPCError – with code SupvisorsFaults.NOT_INSTALLED if psutil is not
installed.

4.4 Application Control

class supvisors.rpcinterface.RPCInterface(supvisors: Any)
This class holds the XML-RPC extension provided by Supvisors.

start_application(strategy, application_name, wait=True)
Start the Managed application named application_name iaw the strategy and the
rules file. To start Unmanaged applications, use supervisor.start('group:*').

Parameters
• strategy (StartingStrategies) – the strategy used to choose a Supvi-

sors instance, as a string or as a value.
• application_name (str) – the name of the application.
• wait (bool) – if True, wait for the application to be fully started before

returning.
Returns

always True unless error or nothing to start.
Return type

bool
Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE if
Supvisors is not in state OPERATION ; Faults.INCORRECT_PARAMETERS
if strategy is unknown to Supvisors ; Faults.BAD_NAME if
application_name is unknown to Supvisors ; SupvisorsFaults.
NOT_MANAGED if the application is not Managed in Supvisors ; Faults.
ALREADY_STARTED if the application is STARTING, STOPPING or RUNNING
; Faults.ABNORMAL_TERMINATION if the internal start request failed ;
Faults.NOT_RUNNING if application_name could not be started.

stop_application(application_name, wait=True)
Stop the Managed application named application_name. To stop Unmanaged ap-
plications, use supervisor.stop('group:*').

Parameters
• application_name (str) – the name of the application.
• wait (bool) – if True, wait for the application to be fully stopped.

Returns
always True unless error.

Return type
bool

Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE if
Supvisors is not in state OPERATION or CONCILIATION ; Faults.
BAD_NAME if application_name is unknown to Supvisors ;

4.4. Application Control 55



Supvisors, Release 0.18

SupvisorsFaults.NOT_MANAGED if the application is not Managed
in Supvisors ; Faults.NOT_RUNNING if application_name is already
stopped ; Faults.STILL_RUNNING if application_name could not be
stopped.

restart_application(strategy, application_name, wait=True)
Restart the application named application_name iaw the strategy and the rules
file. To restart Unmanaged applications, use supervisor.stop('group:*'), then
supervisor.start('group:*').

Parameters
• strategy (StartingStrategies) – the strategy used to choose a

Supvisors instance, as a string or as a value.
• application_name (str) – the name of the application.
• wait (bool) – if True, wait for the application to be fully restarted.

Returns
always True unless error.

Return type
bool

Raises
RPCError – with code SupvisorsFaults.BAD_SUPVISORS_STATE if
Supvisors is not in state OPERATION ; Faults.INCORRECT_PARAMETERS
if strategy is unknown to Supvisors ; Faults.BAD_NAME if
application_name is unknown to Supvisors ; SupvisorsFaults.
NOT_MANAGED if the application is not Managed in Supvisors ; Faults.
ABNORMAL_TERMINATION if the internal restart request failed ; Faults.
NOT_RUNNING if application_name` could not be restarted.

test_start_application(strategy, application_name)
Return a distribution prediction for a start of the Managed application named
application_name iaw the strategy and the rules file.

Parameters
• strategy (StartingStrategies) – the strategy used to choose a

Supvisors instance, as a string or as a value.
• application_name (str) – the name of the application.

Returns
a list of structures with the predicted distribution of the application pro-
cesses.

Return type
list[dict[str, Any]]

Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE if
Supvisors is not in state OPERATION ; Faults.INCORRECT_PARAMETERS
if strategy is unknown to Supvisors ; Faults.BAD_NAME if
application_name is unknown to Supvisors ; SupvisorsFaults.
NOT_MANAGED if the application is not Managed in Supvisors ; Faults.
ALREADY_STARTED if the application is STARTING, STOPPING or RUNNING.

56 Chapter 4. XML-RPC API



Supvisors, Release 0.18

4.5 Process Control

class supvisors.rpcinterface.RPCInterface(supvisors: Any)
This class holds the XML-RPC extension provided by Supvisors.

start_args(namespec, extra_args='', wait=True)
Start the process named namespec on the local Supvisors instance. The behaviour
is different from supervisor.startProcess as it sets the process state to FATAL
instead of throwing an exception to the RPC client. This RPC makes it also possible
to pass extra arguments to the program command line.

Parameters
• namespec (str) – the process namespec.
• extra_args (str) – the extra arguments to be passed to the command

line of the program.
• wait (bool) – if True, wait for the process to be fully started.

Returns
always True unless error.

Return type
bool

Raises
RPCError – with code: Faults.BAD_NAME if namespec is unknown
to Supvisors or Supervisor ; SupvisorsFaults.DISABLED if process is
disabled ; Faults.ALREADY_STARTED if process is RUNNING ; Faults.
ABNORMAL_TERMINATION if process could not be started.

start_process(strategy, namespec, extra_args='', wait=True)
Start a process named namespec iaw the strategy and the rules file. WARN: the
‘wait_exit’ rule is not considered here.

Parameters
• strategy (StartingStrategies) – the strategy used to choose a

Supvisors instance, as a string or as a value.
• namespec (str) – the process namespec (name,``group:name``, or
group:*).

• extra_args (str) – the optional extra arguments to be passed to com-
mand line.

• wait (bool) – if True, wait for the process to be fully started.
Returns

always True unless error.
Return type

bool
Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE
if Supvisors is not in state OPERATION ; Faults.
INCORRECT_PARAMETERS if strategy is unknown to Supvi-
sors ; Faults.BAD_NAME if namespec is unknown to Supvisors
; Faults.ALREADY_STARTED if process is in a running state ;
Faults.ABNORMAL_TERMINATION if the internal start request failed ;
Faults.NOT_RUNNING if namespec could not be started.

start_any_process(strategy, regex, extra_args='', wait=True)
Start one process among those matching the regex iaw the strategy and the rules
file. WARN: the ‘wait_exit’ rule is not considered here.

Parameters
• strategy (StartingStrategies) – the strategy used to choose a

4.5. Process Control 57



Supvisors, Release 0.18

Supvisors instance, as a string or as a value.
• regex (str) – a regular expression to match process namespecs.
• extra_args (str) – the optional extra arguments to be passed to com-

mand line.
• wait (bool) – if True, wait for the process to be fully started.

Returns
the namespec of the process started unless error.

Return type
str

Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE
if Supvisors is not in state OPERATION ; Faults.
INCORRECT_PARAMETERS if strategy is unknown to Supvisors ;
Faults.FAILED if no stopped process found matching regex in Supvi-
sors ; Faults.ABNORMAL_TERMINATION if the internal start request
failed ; Faults.NOT_RUNNING if namespec could not be started.

stop_process(namespec, wait=True)
Stop the process named namespec on the Supvisors instance where it is running.

Parameters
• namespec (str) – the process namespec (name, group:name, or
group:*).

• wait (bool) – if True, wait for process to be fully stopped.
Returns

always True unless error.
Return type

bool
Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE
if Supvisors is not in state OPERATION or CONCILIATION ;
Faults.BAD_NAME if namespec is unknown to Supvisors ;
Faults.NOT_RUNNING if namespec is already stopped ; Faults.
STILL_RUNNING if namespec could not be stopped.

restart_process(strategy, namespec, extra_args='', wait=True)
Restart the process named namespec iaw the strategy and the rules defined in the
rules file. Note that the process will not necessarily start in the same Supvisors
instance as the starting context will be re-evaluated. WARN: the ‘wait_exit’ rule is
not considered here.

Parameters
• strategy (StartingStrategies) – the strategy used to choose a

Supvisors instance, as a string or as a value.
• namespec (str) – the process namespec (name, group:name, or
group:*).

• extra_args (str) – the extra arguments to be passed to the command
line.

• wait (bool) – if True, wait for process to be fully restarted.
Returns

always True unless error.
Return type

bool
Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE
if Supvisors is not in state OPERATION ; Faults.
INCORRECT_PARAMETERS if strategy is unknown to Supvisors ;

58 Chapter 4. XML-RPC API



Supvisors, Release 0.18

Faults.BAD_NAME if namespec is unknown to Supvisors ; Faults.
ABNORMAL_TERMINATION if the internal restart request failed ;
Faults.NOT_RUNNING if namespec could not be restarted.

test_start_process(strategy, namespec)
Return a distribution prediction for starting the processes corresponding to the nam-
spec iaw the strategy and the rules file.

Parameters
• strategy (StartingStrategies) – the strategy used to choose a

Supvisors instance, as a string or as a value.
• namespec (str) – the process namespec (name,``group:name``, or
group:*).

Returns
a list of structures with the predicted distribution of the processes.

Return type
list[dict[str, Any]].

Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE
if Supvisors is not in state OPERATION ; Faults.
INCORRECT_PARAMETERS if strategy is unknown to Supvisors ;
Faults.BAD_NAME if namespec is unknown to Supvisors ; Faults.
ALREADY_STARTED if process is in a running state.

update_numprocs(program_name, numprocs, wait=True, lazy=False)
Update dynamically the numprocs of the program. Implementation of Supervisor
issue #177 - Dynamic numproc change.
When the number of processes decreases:

• the processes in excess are immediately stopped if lazy is False ;
• the processes in excess are kept in Supervisor as long as they’re still running

if lazy is True.

Parameters
• program_name (str) – the program name, as found in the section of

the Supervisor configuration files. Programs, FastCGI programs and
event listeners are supported.

• numprocs (int) – the new numprocs value (must be strictly positive).
• wait (bool) – if True and the numprocs value decreases, wait for the

processes in excess to be stopped.
• lazy (bool) – if True, use the lazy mode when decreasing the pro-

gram numprocs.
Returns

always True unless error.
Return type

bool
Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE
if Supvisors is not in state OPERATION ; Faults.BAD_NAME
if program_name is unknown to Supvisors ; Faults.
INCORRECT_PARAMETERS if numprocs is not a strictly positive
integer ; SupvisorsFaults.NOT_APPLICABLE if the program config-
uration does not support numprocs ; Faults.STILL_RUNNING if one
process corresponding to program_name cannot be stopped.

Hint: This XML-RPC is the implementation of the following Supervisor request:
• #177 - Dynamic numproc change

4.5. Process Control 59

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/177


Supvisors, Release 0.18

enable(program_name, wait=True)
Enable the process, i.e. remove the disabled flag on the corresponding processes if
set. This information is persisted on disk so that it is taken into account on Supervisor
restart. Implementation of Supervisor issue #591 - New Feature: disable/enable.

Parameters
• program_name (str) – the name of the program
• wait (bool) – if True, wait for the corresponding processes to be fully

stopped.
Returns

always True unless error.
Return type

bool
Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE
if Supvisors is not in state OPERATION ; Faults.BAD_NAME if
program_name is unknown to Supvisors.

Hint: This XML-RPC is a part of the implementation of the following Supervisor
request:

• #591 - New Feature: disable/enable

disable(program_name, wait=True)
Disable the program, i.e. stop the corresponding processes if necessary and prevent
them to start. This information is persisted on disk so that it is taken into account
on Supervisor restart. Implementation of Supervisor issue #591 - New Feature: dis-
able/enable.

Parameters
• program_name (str) – the name of the program
• wait (bool) – if True, wait for the corresponding processes to be fully

stopped.
Returns

always True unless error.
Return type

bool
Raises
RPCError – with code: SupvisorsFaults.BAD_SUPVISORS_STATE
if Supvisors is not in state OPERATION ; Faults.BAD_NAME if
program_name is unknown to Supvisors ; Faults.STILL_RUNNING if
at least one process corresponding to program_name cannot be stopped.

Hint: This XML-RPC is a part of the implementation of the following Supervisor
request:

• #591 - New Feature: disable/enable

60 Chapter 4. XML-RPC API

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/591
http://supervisord.org
https://github.com/Supervisor/supervisor/issues/591


Supvisors, Release 0.18

4.6 XML-RPC Clients

This section explains how to use the XML-RPC API from a Python or JAVA client.

4.6.1 Python Client

To perform an XML-RPC from a Python client, Supervisor provides the getRPCInterface function of the
supervisor.childutils module.

The parameter requires a dictionary with the following variables set:

• SUPERVISOR_SERVER_URL: the url of the Supervisor HTTP server (ex: http://localhost:60000),

• SUPERVISOR_USERNAME: the user name for the HTTP authentication (may be void),

• SUPERVISOR_PASSWORD: the password for the HTTP authentication (may be void).

If the Python client has been spawned by Supervisor, the environment already contains these parameters but they are
configured to communicate with the local Supervisor instance.

>>> import os
>>> from supervisor.childutils import getRPCInterface
>>> proxy = getRPCInterface(os.environ)
>>> proxy.supvisors.get_instance_info('cliche81')
{'identifier': 'cliche81', 'node_name': 'cliche81', 'port': 60000, 'statecode': 2,
→˓'statename': 'RUNNING',
'sequence_counter': 885, 'remote_time': 1645285505, 'local_time': 1645285505, 'loading':␣
→˓24,
'fsm_statecode': 3, 'fsm_statename': 'OPERATION', 'starting_jobs': False, 'stopping_jobs
→˓': False}

If the Python client has to communicate with another Supervisor instance, the parameters must be set accordingly.

The ServerProxy of the xmlrpc module can also be used.

>>> from xmlrpc.client import ServerProxy
>>> proxy = ServerProxy('http://cliche81:60000')
>>> proxy.supvisors.get_supvisors_state()
{'fsm_statecode': 3, 'fsm_statename': 'OPERATION', 'starting_jobs': [], 'stopping_jobs':␣
→˓[]}

4.6.2 JAVA Client

There is JAVA client supervisord4j referenced in the Supervisor documentation. However, it comes with the following
drawbacks, taken from the README.md of supervisord4j:

• some XML-RPC are not implemented,

• some implemented XML-RPC are not tested,

• of course, it doesn’t include the Supvisors XML-RPC API.

The Supvisors release comes with a JAR file including a JAVA client. It can be downloaded from the Supvisors releases.

The package org.supvisors.rpc implements all XML-RPC of all interfaces (system, supervisor and
supvisors).

This package requires the following additional dependency:

4.6. XML-RPC Clients 61

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org/plugins.html#libraries-that-integrate-third-party-applications-with-supervisor
https://github.com/satifanie/supervisord4j
https://github.com/julien6387/supvisors/releases


Supvisors, Release 0.18

• Apache XML-RPC.

The binary JAR of Apache XML-RPC 3.1.3 is available in the Apache MAVEN repository.

import org.supvisors.rpc.*;

// create proxy
SupervisorXmlRpcClient client = new SupervisorXmlRpcClient("10.0.0.1", 60000, "toto", "p@
→˓$$w0rd");

// Supervisor XML-RPC
SupervisorXmlRpc supervisor = new SupervisorXmlRpc(client);
System.out.println(supervisor.getState());

// Supvisors XML-RPC
SupvisorsXmlRpc supvisors = new SupvisorsXmlRpc(client);
System.out.println(supvisors.getSupvisorsState());

62 Chapter 4. XML-RPC API

https://ws.apache.org/xmlrpc
https://mvnrepository.com/artifact/org.apache.xmlrpc/xmlrpc/3.1.3


CHAPTER

FIVE

REST API

supvisorsflask is a Supvisors Flask-RESTX application that is added to the BINDIR. It exposes the Supervisor and
Supvisors XML-RPC API through a REST API.

Note: An exception however: the Supervisor system.multicall XML-RPC has not been implemented.

5.1 Starting the Flask-RESTX application

The program supvisorsflask requires 2 main information to work:

• the URL of the Supervisor instance to address the XML-RPCs,

• the URL of the Flask web server to which the REST API will be exposed.

If supvisorsflask is spawned by Supervisor, it naturally gets the URL of the Supervisor instance through
the SUPERVISOR_SERVER_URL environment variable. Otherwise, this URL must be passed using the -u
SUPERVISOR_URL option.

Default values for HOST and PORT are the Flask default values, i.e. the application will run the web server on http:/
/127.0.0.1:5000.

[bash] > supvisorsflask --help
usage: supvisorsflask [--help] -u SUPERVISOR_URL [-h HOST] [-p PORT] [-d]

Start a Flask application to interact with Supvisors

optional arguments:
--help show this help message and exit
-u SUPERVISOR_URL, --supervisor_url SUPERVISOR_URL

the Supervisor URL, required if supvisorsflask is not
spawned by Supervisor

-h HOST, --host HOST the Flask server IP address
-p PORT, --port PORT the Flask server port number
-d, --debug the Flask Debug mode

63

https://flask-restx.readthedocs.io
http://supervisord.org
http://supervisord.org
http://supervisord.org
https://flask.palletsprojects.com
http://supervisord.org
http://supervisord.org
https://flask.palletsprojects.com


Supvisors, Release 0.18

5.2 Using the REST API

The aim of the present documentation is not to be a REST API tutorial. So here follows just a few usage examples with
curl and python. Of course, many other programming languages will provide an API to perform such requests.

5.2.1 curl commands

A first possibility is to use curl commands in a shell.

[bash] > curl -X 'GET' 'http://localhost:5000/supvisors/supvisors_state' -H 'accept:␣
→˓application/json'
{"fsm_statecode": 3, "fsm_statename": "OPERATION", "starting_jobs": [], "stopping_jobs":␣
→˓[]}

[bash] > curl -X 'POST' \
'http://127.0.0.1:5000/supvisors/start_process/CONFIG/my_movies%3Aconverter_00?extra_

→˓args=-x%202&wait=false' \
-H 'accept: application/json'

true

Supervisor XML-RPC exceptions will return a payload including the fault message and code.

[bash] > curl -X 'GET' 'http://localhost:5000/supvisors/application_info/dummy' -H
→˓'accept: application/json'
{"message": "BAD_NAME: application dummy unknown to Supvisors", "code": 10}

[bash] > curl -X 'POST' \
'http://127.0.0.1:5000/supvisors/start_process/CONFIG/my_movies%3Aconverter_00?extra_

→˓args=-x%202&wait=false' \
-H 'accept: application/json'

{"message": "ALREADY_STARTED: my_movies:converter_00", "code": 60}

5.2.2 Python requests

Here is a possibility using the Python module Requests. All results are a JSON string.

>>> import json, requests
>>> res = requests.get('http://localhost:5000/supvisors/supvisors_state')
>>> print(res.text)
{"fsm_statecode": 3, "fsm_statename": "OPERATION", "starting_jobs": [], "stopping_jobs":␣
→˓[]}
>>> print(json.loads(res.text))
{'fsm_statecode': 3, 'fsm_statename': 'OPERATION', 'starting_jobs': [], 'stopping_jobs':␣
→˓[]}
>>> res = requests.post(f'http://localhost:5000/supvisors/start_process/LESS_LOADED/my_
→˓movies%3Aconverter_01?extra_args=-x%201&wait=true')
>>> print(json.loads(res.text))
{'message': 'ABNORMAL_TERMINATION: my_movies:converter_01', 'code': 40}

64 Chapter 5. REST API

http://supervisord.org
https://docs.python-requests.org


Supvisors, Release 0.18

5.3 Using the Swagger UI

An interest in using Flask-RESTX over Flask is to benefit from a documented Web UI when connecting a browser to
the URL defined above.

The Web UI allows to test the REST API proposed.

5.3. Using the Swagger UI 65

https://flask-restx.readthedocs.io
https://flask.palletsprojects.com


Supvisors, Release 0.18

66 Chapter 5. REST API



CHAPTER

SIX

SUPERVISORCTL EXTENSION

This is an extension of the existing supervisorctl API. The additional commands provided by Supvisors are avail-
able by typing help at the prompt.

Important: When supervisorctl is used with the option -s URL, Supervisor does not provide access to the ex-
tended API. This is tracked through Supervisor #1455.

Supvisors alleviates the problem by providing the command supvisorsctl that works with all options. The use of
supvisorsctl is thus preferred to avoid issues, although supervisorctl is suitable when used - explicitly or not -
with a configuration file.

In the same vein, the implementation of Supervisor #591 has introduced a new RPCError exception code (Faults.
DISABLED) that can be raised from Supervisor startProcess XML-RPC. Again, using supervisorctl with the
option -s URL will raise an unknown result code where supvisorsctl will handle it properly.

[bash] > supvisorsctl help

default commands (type help <topic>):
=====================================
add exit open reload restart start tail
avail fg pid remove shutdown status update
clear maintail quit reread signal stop version

supvisors commands (type help <topic>):
=======================================
all_start local_status start_application
all_start_args loglevel start_args
application_info master start_process
application_rules process_rules start_process_args
conciliate restart_application stats_period
conflicts restart_process stats_status
disable restart_sequence stop_application
disable_stats sreload stop_process
enable sshutdown strategies
enable_stats sstate sversion
end_sync sstatus test_start_application
instance_status start_any_process test_start_process
lazy_update_numprocs start_any_process_args update_numprocs

67

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/1455
https://github.com/Supervisor/supervisor/issues/1455
http://supervisord.org


Supvisors, Release 0.18

6.1 Status

sversion

Get the API version of Supvisors.

sstate

Get the Supvisors state.

master

Get the deduced name of the Supvisors Master instance.

strategies

Get the strategies applied in Supvisors.

instance_status

Get the status of all Supvisors instances.

instance_status identifier

Get the status of the Supvisors instance identified by its deduced name.

instance_status identifier1 identifier2

Get the status for multiple Supervisor instances identified by their deduced name.

application_info

Get the status of all applications.

application_info appli

Get the status of application named appli.

application_info appli1 appli2

Get the status for multiple named applications.

sstatus

Get the status of all processes.

sstatus proc

Get the status of the process named proc.

sstatus appli:*

Get the status of all processes in the application named appli.

sstatus proc1 proc2

Get the status for multiple named processes.

local_status

Get the local status (subset of Supervisor status, with extra arguments) of all processes.

local_status proc

Get the local status of the process named proc.

local_status appli:*

Get the local status of all processes in the application named appli.

68 Chapter 6. supervisorctl extension

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

local_status proc1 proc2

Get the local status for multiple named processes.

application_rules

Get the rules of all processes.

application_rules appli

Get the rules of the applications named appli.

application_rules appli1 appli2

Get the rules for multiple named applications.

application_rules

Get the rules of all applications.

process_rules proc

Get the rules of the process named proc.

process_rules appli:*

Get the rules of all processes in the application named appli.

process_rules proc1 proc2

Get the rules for multiple named processes.

conflicts

Get the Supvisors conflicts among the managed applications.

6.2 Supvisors Control

loglevel level

Change the level of the Supvisors logger.

conciliate strategy

Conciliate the conflicts detected by Supvisors if default strategy is USER and Supvisors is in
CONCILIATION` state.

restart_sequence

Triggers the whole Supvisors start sequence.

sreload

Restart all Supvisors instances.

sshutdown

Shutdown all Supvisors instances.

6.2. Supvisors Control 69



Supvisors, Release 0.18

6.3 Statistics Control

stats_status

Get the Supvisors statistics collection status.

enable_stats process

Enable process statistics collection

enable_stats host process

Enable host and process statistics collection.

disable_stats host

Disable host statistics collection.

disable_stats all

Disable host and process statistics collection.

stats_period period

Update the host and process statistics collection period.

6.4 Application Control

From this part, a starting strategy may be required in the command lines. It can take values among { CONFIG,
LESS_LOADED, MOST_LOADED, LOCAL, LESS_LOADED_NODE, MOST_LOADED_NODE }.

start_application strategy

Start all managed applications with a starting strategy.

start_application strategy appli

Start the managed application named appli with a starting strategy.

start_application strategy appli1 appli2

Start multiple named managed applications with a starting strategy.

stop_application

Stop all managed applications.

stop_application appli

Stop the managed application named appli.

stop_application appli1 appli2

Stop multiple named mnaged applications.

restart_application strategy

Restart all managed applications with a starting strategy.

restart_application strategy appli

Restart the managed application named appli with a starting strategy.

restart_application strategy appli1 appli2

Restart multiple named managed applications with a starting strategy.

70 Chapter 6. supervisorctl extension



Supvisors, Release 0.18

test_start_application strategy appli

Return a prediction of the distribution of the managed application named appli with a starting strategy.

6.5 Process Control

start_process strategy

Start all processes with a starting strategy.

start_process strategy proc

Start the process named proc with a starting strategy.

start_process strategy proc1 proc2

Start multiple named processes with a starting strategy.

start_any_process strategy regex

Start a process whose namespec matches the regular expression and with a starting strategy.

start_any_process strategy regex1 regex2

Start multiple processes whose namespec matches the regular expressions and with a starting strategy.

start_args proc arg_list

Start the process named proc in the local Supvisors instance and with the additional arguments arg_list
passed to the command line.

start_process_args strategy proc arg_list

Start the process named proc with a starting strategy and with the additional arguments arg_list passed to
the command line.

start_any_process_args strategy regex arg_list

Start a process whose namespec matches the regular expression, using a starting strategy and additional
arguments arg_list passed to the command line.

all_start proc

Start the process named proc on all RUNNING Supvisors instances.

all_start_args proc arg_list

Start the process named proc on all RUNNING Supvisors instances and with the additional arguments
arg_list passed to the command line.

stop_process

Stop all processes on all addresses.

stop_process proc

Stop the process named proc.

stop_process proc1 proc2

Stop multiple named processes.

restart_process strategy

Restart all processes with a starting strategy.

restart_process strategy proc

6.5. Process Control 71



Supvisors, Release 0.18

Restart the process named proc with a starting strategy.

restart_process strategy proc1 proc2

Restart multiple named process with a starting strategy.

test_start_process strategy proc

Return a prediction of the distribution of the process named proc with a starting strategy.

test_start_process strategy appli:*

Return a prediction of the distribution of all appli application processes with a starting strategy.

update_numprocs program_name numprocs

Increase or decrease dynamically the program numprocs (including FastCGI programs and Event listeners),
stopping the obsolete programs immediately.

lazy_update_numprocs program_name numprocs

Increase or decrease dynamically the program numprocs (including FastCGI programs and Event listeners),
giving a chance to the obsolete programs to end by themselves.

enable program_name

Enable the processes corresponding to the program.

disable program_name

Stop and disable the processes corresponding to the program.

72 Chapter 6. supervisorctl extension



CHAPTER

SEVEN

EVENT INTERFACE

7.1 Available Protocols

The Supvisors Event Interface can be created either using a ZeroMQ socket or using websockets.

All messages consist in a header and a body.

Attention: The websockets implementation requires a Python version 3.7 or later.

7.2 Message header

This header is a unicode string that identifies the type of the event and that is defined as follows in the supvisors.
ttypes module:

class EventHeaders(Enum):
""" Strings used as headers in messages between EventPublisher and Supvisors' Client.

→˓"""
SUPVISORS = 'supvisors'
INSTANCE = 'instance'
APPLICATION = 'application'
PROCESS_EVENT = 'event'
PROCESS_STATUS = 'process'
HOST_STATISTICS = 'hstats'
PROCESS_STATISTICS = 'pstats'

The header value is used to set the event subscriptions.

7.3 Message data

The second part of the message is a dictionary serialized in JSON. Of course, the contents depends on the message type.

73

https://zeromq.org
https://websockets.readthedocs.io
https://websockets.readthedocs.io


Supvisors, Release 0.18

7.3.1 Supvisors status

Key Type Value
‘fsm_statecode’int The state of Supvisors, in [0;6].
‘fsm_statename’str The string state of Supvisors, among { 'INITIALIZATION', 'DISTRIBUTION',

'OPERATION', 'CONCILIATION', 'RESTARTING', 'SHUTTING_DOWN', 'FINAL' }.
‘discov-
ery_mode’

bool True if the Supvisors discovery mode is activated.

‘start-
ing_jobs’

list(str)The list of Supvisors instances having starting jobs in progress.

‘stop-
ping_jobs’

list(str)The list of Supvisors instances having stopping jobs in progress.

7.3.2 Supvisors instance status

Key Type Value
‘identifier’ str The deduced name of the Supvisors instance.
‘node_name’ str The name of the node where the Supvisors instance is running.
‘port’ int The HTTP port of the Supvisors instance.
‘statecode’ int The Supvisors instance state, in [0;6].
‘statename’ str The Supvisors instance state as string, among { 'UNKNOWN', 'CHECKING',

‘CHECKED’`, 'RUNNING', 'SILENT', 'FAILED', 'ISOLATED' }.
‘discov-
ery_mode’

bool True if the discovery mode is activated in the Supvisors instance.

‘re-
mote_sequence_counter’

int The remote TICK counter, i.e. the number of TICK events received since the remote
Supvisors instance is running.

‘remote_mtime’ floatThe monotonic time received in the last heartbeat sent by the remote Supvisors instance,
in seconds since the remote host started.

‘remote_time’ floatThe POSIX time received in the last heartbeat sent by the remote Supvisors instance, in
seconds and in the remote reference time.

‘lo-
cal_sequence_counter’

int The local TICK counter when the latest TICK was received from the remote Supvisors
instance.

‘local_mtime’ floatThe monotonic time when the latest TICK was received from the remote Supvisors in-
stance, in seconds since the local host started.

‘local_time’ floatThe POSIX time when the latest TICK was received from the remote Supvisors instance,
in seconds and in the local reference time.

‘loading’ int The sum of the expected loading of the processes running on the node, in [0;100]%.
‘process_failure’ bool True if one of the local processes has crashed or has exited unexpectedly.

74 Chapter 7. Event interface



Supvisors, Release 0.18

7.3.3 Application status

Key Type Value
‘applica-
tion_name’

str The Application name.

‘statecode’ int The Application state, in [0;3].
‘statename’ str The Application state as string, among { 'STOPPED', 'STARTING', 'RUNNING',

'STOPPING' }.
‘major_failure’ bool True if the application is running and at least one required process is not started.
‘minor_failure’ bool True if the application is running and at least one optional (not required) process is not

started.

7.3.4 Process status

Key Type Value
‘ap-
plica-
tion_name’

str The Application name.

‘pro-
cess_name’

str The Process name.

‘state-
code’

int The Process state, in {0, 10, 20, 30, 40, 100, 200, 1000}. A special value -1 means that the process
has been deleted as a consequence of an XML-RPC update_numprocs.

‘state-
name’

str The Process state as string, among { 'STOPPED', 'STARTING', 'RUNNING', 'BACKOFF',
'STOPPING', 'EXITED', 'FATAL', 'UNKNOWN' }. A special value DELETED means that the pro-
cess has been deleted as a consequence of an XML-RPC update_numprocs.

‘ex-
pected_exit’

bool True if the exit status is expected (only when state is 'EXITED').

‘last_event_time’float The date of the last process event received for this process, regardless of the originating Supvisors
instance.

‘iden-
tifiers’

list(str)The deduced names of the Supvisors instances where the process is running.

‘ex-
tra_args’

str The additional arguments passed to the command line of the process.

Hint: The expected_exit information of this event provides an answer to the following Supervisor request:

• #1150 - Why do event listeners not report the process exit status when stopped/crashed?

7.3. Message data 75

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/1150


Supvisors, Release 0.18

7.3.5 Process event

Key Type Value
‘group’ str The Application name.
‘name’ str The Process name.
‘state’ int The Process state, in {0, 10, 20, 30, 40, 100, 200, 1000}. A special value -1 means that the process

has been deleted as a consequence of an XML-RPC update_numprocs.
‘ex-
pected’

bool True if the exit status is expected (only when state is 100 - EXITED).

‘now’ floatThe monotonic time of the event in the reference time of the host.
‘pid’ int The UNIX process ID (only when state is 20 - RUNNING or 40 - STOPPING).
‘iden-
tifier’

str The deduced name of the Supvisors instance that sent the initial event.

‘ex-
tra_args’

str The additional arguments passed to the command line of the process.

‘dis-
abled’

bool True if the process is disabled on the Supvisors instance.

7.3.6 Host statistics

Key Type Value
‘identi-
fier’

str The deduced name of the Supvisors instance.

‘tar-
get_period’

float The configured integration period.

‘period’ list(float) The start and end uptimes of the integration period, as a list of 2 values.
‘cpu’ list(float) The CPU (IRIX mode) on the node. The first element of the list is the average CPU.

The following elements correspond to the CPU on every processor core.
‘mem’ float The memory occupation on the node.
‘io’ dict(str,

list(float)
The Process namespec.

7.3.7 Process statistics

Key Type Value
‘namespec’ str The Process namespec.
‘identifier’ str The deduced name of the Supvisors instance.
‘target_period’ float The configured integration period.
‘period’ list(float) The start and end uptimes of the integration period, as a list of 2 values.
‘cpu’ float The CPU (IRIX mode) of the process on the node.
‘mem’ float The memory occupation of the process on the node.

76 Chapter 7. Event interface



Supvisors, Release 0.18

7.4 ZeroMQ Implementation

The ZeroMQ implementation relies on a PUB-SUB pattern provided by PyZMQ (Python binding of ZeroMQ).

When the event_link option is set to ZMQ, Supvisors binds a PUBLISH PyZMQ socket on all interfaces using the
event_port option defined in the rpcinterface extension point of the Supervisor configuration file.

Supvisors publishes the events in multi-parts messages. The first part is the message header, as a unicode string. The
body follows, encoded in JSON.

To receive the Supvisors events, the client application must connect a SUBSCRIBE PyZMQ socket to the address defined
by the node name and the port number where the Supvisors PUBLISH PyZMQ socket is bound.

PyZMQ makes it possible to filter the messages received on the client side by subscribing to a part of them. To receive
all messages, just subscribe using an empty string.

For example, the following Python instructions configure the PyZMQ socket so as to receive only the Supvisors Status
and Process Status events:

socket.setsockopt(zmq.SUBSCRIBE, EventHeaders.SUPVISORS.value.encode('utf-8'))
socket.setsockopt(zmq.SUBSCRIBE, EventHeaders.PROCESS_STATUS.value.encode('utf-8'))

7.4.1 Python Client

Supvisors provides a Python implementation of the ZeroMQ client subscriber. The SupvisorsZmqEventInterface is
designed to receive the Supvisors events from a Supvisors instance. It requires PyZMQ to be installed.

class supvisors.client.zmqsubscriber.SupvisorsZmqEventInterface(zmq_context: Context,
node_name: str, event_port: int,
logger: Logger)

The SupvisorsZmqEventInterface connects to Supvisors and receives the events published using the PyZMQ
interface.

The SupvisorsEventInterface requires:

• an asynchronous PyZMQ context,

• the node name where the Supvisors instance is running and publishing its events,

• the event port number used by the Supvisors instance to publish its events,

• a logger.

This event port number MUST correspond to the event_port value set in the [supvisors] section of the Supervisor
configuration file.

The default behaviour is to print the messages received. For any other behaviour, just specialize the methods
on_xxx_status.

WARN: Notifications are received in the context of the client thread.

Example:
import zmq.asyncio from supvisors.client.zmqsubscriber import SupvisorsZmqEventInterface

intf = SupvisorsZmqEventInterface(zmq.asyncio.Context.instance(), ‘localhost’, 9003, logger)
intf.subscribe_all() intf.start() # . . . receive notifications . . . intf.stop()

on_supvisors_status(data)
Receive and log the contents of the Supvisors Status message.

7.4. ZeroMQ Implementation 77

https://zeromq.org
https://pyzmq.readthedocs.io
https://zeromq.org
https://pyzmq.readthedocs.io
http://supervisord.org
https://pyzmq.readthedocs.io
https://pyzmq.readthedocs.io
https://pyzmq.readthedocs.io
https://pyzmq.readthedocs.io
https://zeromq.org
https://pyzmq.readthedocs.io


Supvisors, Release 0.18

Parameters
data – the latest Supvisors status

Returns
None

on_instance_status(data)
Receive and log the contents of the Supvisors Instance Status message.

Parameters
data – the latest status about a given Supvisors instance

Returns
None

on_application_status(data)
Receive and log the contents of the Application Status message.

Parameters
data – the latest status about a given Application

Returns
None

on_process_status(data)
Receive and log the contents of the Process Status message.

Parameters
data – the latest status about a given Process

Returns
None

on_process_event(data)
Receive and log the contents of the Process Event message.

Parameters
data – the latest event about a given Process

Returns
None

on_host_statistics(data)
Receive and log the contents of the Host Statistics message.

Parameters
data – the latest statistics about a given host where Supvisors is running

Returns
None

on_process_statistics(data)
Receive and log the contents of the Process Statistics message.

Parameters
data – the latest statistics about a given process running in Supvisors

Returns
None

78 Chapter 7. Event interface



Supvisors, Release 0.18

import zmq.asyncio
from supvisors.client.clientutils import create_logger
from supvisors.client.zmqsubscriber import SupvisorsZmqEventInterface

# create the subscriber thread
subscriber = SupvisorsZmqEventInterface(zmq.asyncio.Context.instance(), 'localhost',␣
→˓9003, create_logger())
# subscribe to all messages
subscriber.subscribe_all()
# start the thread
subscriber.start()

7.4.2 JAVA Client

A JAVA implementation of the ZeroMQ client subscriber is made available with each Supvisors release through a JAR
file. This file can be downloaded from the Supvisors releases.

The SupvisorsEventSubscriber of the org.supvisors.event package is designed to receive the Supvisors events
from the local Supvisors instance. A SupvisorsEventListener with a specialization of the methods onXxxStatus must
be attached to the SupvisorsEventSubscriber instance to receive the notifications.

It requires the following additional dependencies:

• JeroMQ.

• Gson.

The binary JAR of JeroMQ 0.5.2 is available in the JeroMQ MAVEN repository.

The binary JAR of Google Gson 2.8.6 is available in the Gson MAVEN repository.

import org.supvisors.event.*;

// create ZeroMQ context
Context context = ZMQ.context(1);

// create and configure the subscriber
SupvisorsEventSubscriber subscriber = new SupvisorsEventSubscriber(9003, context);
subscriber.subscribeToAll();
subscriber.setListener(new SupvisorsEventListener() {

@Override
public void onSupvisorsStatus(final SupvisorsStatus status) {

System.out.println(status);
}

@Override
public void onInstanceStatus(final SupvisorsInstanceInfo status) {

System.out.println(status);
}

@Override
public void onApplicationStatus(final SupvisorsApplicationInfo status) {

System.out.println(status);
(continues on next page)

7.4. ZeroMQ Implementation 79

https://zeromq.org
https://github.com/julien6387/supvisors/releases
https://github.com/zeromq/jeromq
https://github.com/google/gson
https://mvnrepository.com/artifact/org.zeromq/jeromq/0.5.2
https://mvnrepository.com/artifact/com.google.code.gson/gson/2.8.6


Supvisors, Release 0.18

(continued from previous page)

}

@Override
public void onProcessStatus(final SupvisorsProcessInfo status) {

System.out.println(status);
}

@Override
public void onProcessEvent(final SupvisorsProcessEvent event) {

System.out.println(event);
}

@Override
public void onHostStatistics(final SupvisorsHostStatistics status) {

System.out.println(status);
}

@Override
public void onProcessStatistics(final SupvisorsProcessStatistics status) {

System.out.println(status);
}

});

// start subscriber in thread
Thread t = new Thread(subscriber);
t.start();

7.5 websockets Implementation

Attention: The websockets implementation requires a Python version 3.7 or later.

When the event_link option is set to WS, Supvisors creates a websockets server that binds on all interfaces using the
event_port option defined in the rpcinterface extension point of the Supervisor configuration file.

Supvisors publishes the event messages as a tuple of header, as a unicode string, and body, encoded in JSON.

To receive the Supvisors events, the client application must create a websockets client that connects to the address
defined by the node name and the port number where the Supvisors websockets server has bound.

Filtering the messages is performed by adding headers to the path of the URI. To receive all messages, just add all to
the path of the URI.

For example, the following Python instructions configure the websockets client so as to receive only the Supvisors
Status and Process Status events:

import websockets

uri = 'ws://localhost:9003/supvisors/process'
async with websockets.connect(uri) as ws:

...

80 Chapter 7. Event interface

https://websockets.readthedocs.io
https://websockets.readthedocs.io
http://supervisord.org
https://websockets.readthedocs.io
https://websockets.readthedocs.io
https://websockets.readthedocs.io


Supvisors, Release 0.18

7.5.1 Python Client

Supvisors provides a Python implementation of the websockets client. The SupvisorsWsEventInterface is designed
to receive the Supvisors events from a Supvisors instance. It requires websockets to be installed.

class supvisors.client.wssubscriber.SupvisorsWsEventInterface(node_name: str, event_port: int,
logger: Logger)

The SupvisorsWsEventInterface connects to Supvisors and receives the events published using the Websockets
interface.

The SupvisorsWsEventInterface requires:

• the node name where the Supvisors instance is running and publishing its events ;

• the event port number used by the Supvisors instance to publish its events ;

• a logger.

Considering the [supvisors] section of the Supervisor configuration file:

• the event_link option MUST be set to WS ;

• the event_port value MUST be used when creating an instance of this class.

The default behaviour is to print the messages received. For any other behaviour, just specialize the methods
on_xxx_status.

WARN: Notifications are received in the context of the client thread.

Example:
from supvisors.client.wssubscriber import SupvisorsWsEventInterface

intf = SupvisorsWsEventInterface(‘localhost’, 9003, logger) intf.subscribe_all() intf.start() # . . . receive
notifications . . . intf.stop()

on_supvisors_status(data)
Receive and log the contents of the Supvisors Status message.

Parameters
data – the latest Supvisors status

Returns
None

on_instance_status(data)
Receive and log the contents of the Supvisors Instance Status message.

Parameters
data – the latest status about a given Supvisors instance

Returns
None

on_application_status(data)
Receive and log the contents of the Application Status message.

Parameters
data – the latest status about a given Application

Returns
None

7.5. websockets Implementation 81

https://websockets.readthedocs.io
https://websockets.readthedocs.io


Supvisors, Release 0.18

on_process_status(data)
Receive and log the contents of the Process Status message.

Parameters
data – the latest status about a given Process

Returns
None

on_process_event(data)
Receive and log the contents of the Process Event message.

Parameters
data – the latest event about a given Process

Returns
None

on_host_statistics(data)
Receive and log the contents of the Host Statistics message.

Parameters
data – the latest statistics about a given host where Supvisors is running

Returns
None

on_process_statistics(data)
Receive and log the contents of the Process Statistics message.

Parameters
data – the latest statistics about a given process running in Supvisors

Returns
None

from supvisors.client.clientutils import create_logger
from supvisors.client.wssubscriber import SupvisorsWsEventInterface

# create the subscriber thread
subscriber = SupvisorsWsEventInterface('localhost', 9003, create_logger())
# subscribe to all messages
subscriber.subscribe_all()
# start the thread
subscriber.start()

82 Chapter 7. Event interface



CHAPTER

EIGHT

SPECIAL FEATURES

8.1 Synchronizing Supvisors instances

The overall design of Supvisors is to add a Supvisors plugin into every Supervisor instances, and to make them share
the events generated by Supervisor with each other.

To that end, a communication protocol needs to be put in place place between all Supvisors instances. Given the
objectives of Supvisors, a polling mechanism doesn’t fit. All Supervisor events have to be processed, so an event-
driven protocol is naturally considered.

8.1.1 Communication protocols

2 internal communication protocols are used in Supvisors.

XML-RPC publication

The main protocol implemented in Supvisors is based on the XML-RPC protocol provided by Supervisor. It is used
to share the local events to the other Supvisors instances.

The XML-RPC protocol was originally discarded because it led easily to deadlocks when involving requests to multiple
Supervisor instances. So a first implementation has been done based on a PyZmq PUB-SUB. It then has been replaced
by a custom implementation to limit the mandatory dependencies and to have a better control over the underlying threads
and sockets. In both case, the events were sent over a TCP socket and posted sequentially to the local Supervisor using
a supervisor.sendRemoteCommEvent XML-RPC.

Finally, with a proper understanding of the limitations brought by the XML-RPC implementation and its non-thread-
safe nature, the Supvisors design has been simplified so that the local events and requests are processed in threads
dedicated to each Supervisor proxy.

The TICK events are sent to all Supvisors instances discovered of declared in the supvisors_list option of the
[supvisors] section in the Supervisor configuration file, with the exception of ISOLATED instances. As soon as the
Supvisors instance is CHECKED, all other events are shared.

83

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

UDP Multicast

The second protocol implemented in Supvisors is based on an UDP Multicast. It relies on the following options in
the [supvisors] section in the Supervisor configuration file:

• multicast_group ;

• multicast_interface ;

• multicast_ttl.

With this protocol, the Supvisors instances could be unknown at start-up and will be discovered on-the-fly. The UDP
Multicast group is used to exchange ticks. Upon reception of a tick coming from an unknown Supvisors instance, the
local Supvisors instance adds the remote Supvisors instance into its internal model and opens the TCP connections
with it.

Note: Although it has been considered at some point, the idea od having Supvisors working only in UDP Multicast,
without the TCP Publish / Subscribe, has been discarded. Supvisors cannot afford to lose events or to receive them in
an inappropriate sequence.

8.1.2 Principles of Synchronization

The INITIALIZATION state of Supvisors is used as a synchronization phase so that all Supvisors instances are mutu-
ally aware of each other.

The following options defined in the rpcinterface extension point of the Supervisor configuration file are particularly
used for synchronizing multiple instances of Supervisor:

• supvisors_list ;

• synchro_options ;

• synchro_timeout ;

• core_identifiers ;

• auto_fence.

Common part

Once started, all Supvisors instances publish the events received from Supervisor, especially the TICK events that are
triggered every 5 seconds.

At the beginning, all Supvisors instances are declared in an UNKNOWN state. When the first TICK event is received
from a remote Supvisors instance, a hand-shake is performed between the 2 Supvisors instances. The local Supvisors
instance:

• sets the remote Supvisors instance state to CHECKING ;

• performs a supvisors.get_instance_info(local_identifier) XML-RPC to the remote Supvisors in-
stance in order to know how the local Supvisors instance is perceived by the remote Supvisors instance.

At this stage, 2 possibilities:

• the local Supvisors instance is seen as ISOLATED by the remote instance:

– the remote Supvisors instance status is then reciprocally set to ISOLATED ;

• the local Supvisors instance is NOT seen as ISOLATED by the remote instance:

84 Chapter 8. Special Features

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

– a supervisor.getAllProcessInfo() XML-RPC is requested to the remote instance ;

– the processes information is loaded into the internal data structure ;

– the remote Supvisors instance status is set to CHECKED, then RUNNING.

What happens next will depend on the conditions selected in the synchro_options option.

Whatever the number of available Supvisors instances, Supvisors elects a Master among the active Supvisors instances
and enters the DISTRIBUTION state to start automatically the applications.

By default, the Supvisors Master instance is the Supvisors instance having the smallest deduced name among all the
active Supvisors instances, unless the attribute core_identifiers is used. In the latter case, candidates are taken
from this list in priority.

Important: About late Supvisors instances

When a Supvisors instance is started while the others are already in OPERATION. During the hand-shake, the local
Supvisors instance gets the Master identified by the remote Supvisors. That confirms that the local Supvisors instance
is a late starter and thus the local Supvisors instance adopts this Master too and skips the synchronization phase.

STRICT option

When the STRICT option is selected, the synchronization is complete when all Supvisors instances declared in the
supvisors_list option are marked as RUNNING. This excludes any Supvisors instance that has been added to Supvi-
sors in discovery mode.

This option prevails over the LIST and USER options if combined with them.

LIST option

When the LIST option is selected, the synchronization is complete when all known Supvisors instances are marked
as RUNNING. This includes the Supvisors instances declared in the supvisors_list option AND the Supvisors
instances that has been added to Supvisors in discovery mode.

This option prevails over the USER options if combined with it.

TIMEOUT option

It may happen that some declared Supvisors instances do not publish (very late starting, no starting at all, system down,
network down, etc).

When the TIMEOUT option is selected, each Supvisors instance waits for synchro_timeout seconds to give a chance
to all other instances to publish. When this delay is exceeded, all the Supvisors instances that are not identified as
RUNNING or ISOLATED are set to:

• SILENT if Auto-Fencing is not activated ;

• ISOLATED if Auto-Fencing is activated.

This option prevails over all other synchro_options options if combined with them.

8.1. Synchronizing Supvisors instances 85



Supvisors, Release 0.18

CORE option

Another possibility is when it is predictable that some Supvisors instances may be started later. For example, the pool
of nodes may include servers that will always be started from the very beginning and consoles that may be started only
on demand.

In this case, it would be a pity to always wait for synchro_timeout seconds. That’s why the core_identifiers
attribute has been introduced so that the synchronization phase is considered completed when a subset of the Supvisors
instances declared in supvisors_list are RUNNING.

This option prevails over LIST and USER options if combined with them.

USER option

This option is useful in a context where Supvisors is running in a system made up of many nodes that may be started
on a random basis and where core Supvisors instances cannot be easily identified.

When the USER option is selected, it allows the user to put an end to the synchronization phase when the set of running
Supvisors instances is suitable to the user.

This action can be performed through the Supvisors end_sync XML-RPC (via code, supervisorctl or the Supvi-
sors Web UI). This XML-RPC has an optional parameter that allows the user to select the Supvisors Master instance.
If not set, the default election mechanism applies.

8.2 Auto-Fencing

Auto-fencing is applied when the auto_fence option of the rpcinterface extension point is set. It takes place when one
of the Supvisors instances is seen as inactive (crash, system power down, network failure) from the other Supvisors
instances.

In this case, the running Supvisors instances disconnect the corresponding URL from their subscription socket. The
Supvisors instance is marked as ISOLATED and, in accordance with the program rules defined, Supvisors may restart
somewhere else the processes that were eventually running in that Supvisors instance.

If the incriminated Supvisors instance is restarted, the isolation doesn’t prevent the new Supvisors instance to receive
events from the other instances that have isolated it. Indeed, it has not been considered so far to filter the subscribers
from the Publish side.

That’s why the hand-shake is performed in Synchronizing Supvisors instances. Each newly arrived Supvisors instance
asks to the others if it has been previously isolated before taking into account the incoming events.

In the case of a network failure, the same mechanism is of course applied on the other side. Here comes the premises
of a split-brain syndrome, as it leads to have 2 separate and identical sets of applications.

If the network failure is fixed, both sets of Supvisors are still running but do not communicate between them.

Attention: Supvisors does NOT isolate the nodes at the Operating System level, so that when the incriminated
nodes become active again, it is still possible to perform network requests between all nodes, despite the Supvisors
instances do not communicate anymore.

Similarly, it is outside the scope of Supvisors to isolate the communication at application level. It is the user’s
responsibility to isolate his applications.

86 Chapter 8. Special Features



Supvisors, Release 0.18

8.3 Extra Arguments

Supervisor users have requested the possibility to add extra arguments to the command line of a program without having
to update and reload the program configuration in Supervisor.

#1023 - Pass arguments to program when starting a job?

Indeed, the applicative context is evolving at runtime and it may be quite useful to give some information to the new
process (options, path, URL of a server, URL of a display, etc), especially when dealing with distributed applications.

Supvisors introduces new XML-RPCs that are capable of taking into account extra arguments that are passed to the
command line before the process is started:

• supvisors.start_args: start a process in the local Supvisors instance ;

• supvisors.start_process: start a process using a starting strategy.

Note: The extra arguments of the program are shared by all Supvisors instances. Once used, they are published
through a Supvisors internal event and are stored directly into the Supervisor internal configuration of the programs.

In other words, considering 2 Supvisors instances A and B, a process that is started in Supvisors instance A with extra
arguments and configured to restart on node crash (refer to Running Failure strategy). if the Supvisors instance A
crashes (or simply becomes unreachable), the process will be restarted in the Supvisors instance B with the same extra
arguments.

Attention: A limitation however: the extra arguments are reset each time a new Supvisors instance connects to
the other ones, either because it has started later or because it has been disconnected for a while due to a network
issue.

8.4 Starting strategy

Supvisors provides a means to start a process without telling explicitly where it has to be started, and in accordance
with the rules defined for this program.

8.4.1 Choosing a Supvisors instance

The following rules are applicable whatever the chosen strategy:

• the process must not be already in a running state in a broad sense, i.e. RUNNING, STARTING or BACKOFF ;

• the process must be known to the Supervisor of the targeted Supvisors instance ;

• the related program must be enabled in the targeted Supvisors instance ;

• the targeted Supvisors instance must be RUNNING ;

• the targeted Supvisors instance must be allowed in the identifiers rule of the process ;

• the load of the targeted node where multiple Supvisors instances may be running must not exceed 100% when
adding the expected_loading of the program to be started.

The load of a Supvisors instance is defined as the sum of the expected_loading of each process running in this
Supvisors instance.

The load of a node is defined as the sum of the loads of the Supvisors instances that are running on this node.

8.3. Extra Arguments 87

http://supervisord.org
http://supervisord.org
https://github.com/Supervisor/supervisor/issues/1023
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

When applying the CONFIG strategy, Supvisors chooses the first Supvisors instance available in the supvisors_list.

TODO: discovery

When applying the LESS_LOADED strategy, Supvisors chooses the Supvisors instance in the supvisors_list having
the lowest load. The aim is to distribute the process load among the available Supvisors instances.

When applying the MOST_LOADED strategy, Supvisors chooses the Supvisors instance in the supvisors_list having
the greatest load. The aim is to maximize the loading of a Supvisors instance before starting to load another Supvisors
instance. This strategy is more interesting when the resources are limited.

When applying the LESS_LOADED_NODE strategy, Supvisors chooses the Supvisors instance in the supvisors_list
having the lowest load on the node having the lowest load.

When applying the MOST_LOADED_NODE strategy, Supvisors chooses the Supvisors instance in the supvisors_list
having the greatest load on the node having the greatest load.

When applying the LOCAL strategy, Supvisors chooses the local Supvisors instance. A typical use case is to start an
HCI application on a given console, while other applications / services may be distributed over other nodes.

Attention: A consequence of choosing the LOCAL strategy as the default starting_strategy in the rpcinterface
extension point is that all programs will be started on the Supvisors Master instance.

Note: When a single Supvisors instance is running on each node, LESS_LOADED_NODE and MOST_LOADED_NODE are
strictly equivalent to LESS_LOADED and MOST_LOADED.

8.4.2 Starting a process

The internal Starter of Supvisors applies the following logic to start a process:

if the process is stopped:
choose a Supvisors instance for the process in accordance with the rules defined in the previous section
perform a supvisors.start_args(namespec) XML-RPC to the chosen Supvisors instance

This single job is considered completed when:

• a RUNNING event is received and the wait_exit rule is not set for this process ;

• an EXITED event is received with an expected exit code and the wait_exit rule is set for this process ;

• an error is encountered (FATAL event, EXITED event with an unexpected exit code) ;

• no STARTING event has been received 2 ticks after the XML-RPC ;

• no RUNNING event has been received X+2 ticks after the XML-RPC, X corresponding to the number of ticks
needed to cover the startsecs seconds of the program definition in the Supvisors instance where the process
has been requested to start.

This principle is used for starting a single process using a supvisors.start_process XML-RPC.

88 Chapter 8. Special Features



Supvisors, Release 0.18

Attention: About using the wait_exit rule

If the process is expected to exit and does not exit, it will block the Starter until Supvisors is restarted.

8.4.3 Starting an application

The application start sequence is re-evaluated every time a new Supvisors instance becomes active in Supvisors.
Indeed, as explained above, the internal data structure is updated with the programs configured in the new Supervisor
instance and this may have an impact on the application start sequence.

The start sequence corresponds to a dictionary where:

• the keys correspond to the list of start_sequence values defined in the program rules of the application ;

• the value associated to a key contains the list of programs having this key as start_sequence.

Hint: The logic applied here is an answer to the following Supervisor unresolved issues:

• #122 - supervisord Starts All Processes at the Same Time

• #456 - Add the ability to set different “restart policies” on process workers

Important: Only the Managed applications can have a start sequence, i.e. only those that are declared in the Supvisors
Supvisors’ Rules File.

The programs having a start_sequence lower or equal to 0 are not considered in the start sequence, as they are not
meant to be automatically started.

The internal Starter of Supvisors applies the following principle to start an application:

while application start sequence is not empty:
pop the process list having the lower (strictly positive) start_sequence

for each process in process list:
apply Starting a process

wait for the jobs to complete

This principle is used for starting a single application using a supvisors.start_application XML-RPC.

8.4. Starting strategy 89

http://supervisord.org
http://supervisord.org
https://github.com/Supervisor/supervisor/issues/122
https://github.com/Supervisor/supervisor/issues/456


Supvisors, Release 0.18

8.4.4 Starting all applications

When entering the DISTRIBUTION state, all Supvisors instances evaluate the global start sequence using the
start_sequence rule configured for the applications and processes.

The global start sequence corresponds to a dictionary where:

• the keys correspond to the list of start_sequence values defined in the application rules ;

• the value associated to a key is the list of application start sequences whose applications have this key as
start_sequence.

The Supvisors Master instance starts the applications using the global start sequence. The following pseudo-code
explains the logic used:

while global start sequence is not empty:
pop the application list having the lower (strictly positive) start_sequence

for each application in application list:
apply Starting an application

wait for the jobs to complete

Note: The applications having a start_sequence lower or equal to 0 are not considered, as they are not meant to be
automatically started.

Important: When leaving the DISTRIBUTION state, it may happen that some applications are not started properly
due to missing relevant Supvisors instances.

When a Supvisors instance is started later and is authorized in the Supvisors ensemble, Supvisors transitions back to
the DISTRIBUTION state and tries to repair such applications. The applications are not restarted. Only the stopped
processes are considered.

May the new Supvisors instance arrive during a DISTRIBUTION or CONCILIATION phase, the transition to the
DISTRIBUTION state is deferred until the current distribution or conciliation jobs are completed. It has been chosen
NOT to transition back to the INITIALIZATION state to avoid a new synchronization phase.

8.5 Starting Failure strategy

When an application is starting, it may happen that any of its programs cannot be started due to various reasons:

• the program command line is wrong ;

• third parties are missing ;

• none of the Supvisors instances defined in the identifiers of the program rules are started ;

• the applicable Supvisors instances are already too much loaded ;

• etc.

90 Chapter 8. Special Features



Supvisors, Release 0.18

Supvisors uses the starting_failure_strategy option of the rules file to determine the behavior to apply when a
required process cannot be started. Programs having the required set to False are not considered as their absence
is minor by definition.

Possible values are:

• ABORT: Abort the application starting ;

• STOP: Stop the application ;

• CONTINUE: Skip the failure and continue the application starting.

8.6 Running Failure strategy

The autorestart option of Supervisor may be used to restart automatically a process that has crashed or has exited
unexpectedly (or not). However, when the node itself crashes or becomes unreachable, the other Supervisor instances
cannot do anything about that.

Supvisors uses the running_failure_strategy option of the rules file to warm restart a process that was running
on a node that has crashed, in accordance with the default starting_strategy set in the rpcinterface extension point
and with the supvisors_list program rules set in the Supvisors’ Rules File.

This option can be also used to stop or restart the whole application after a process crash. Indeed, it may happen that
some applications cannot survive if one of their processes is just restarted.

Possible values are:

• CONTINUE: Skip the failure and the application keeps running ;

• RESTART_PROCESS: Restart the lost process on another Supvisors instance ;

• STOP_APPLICATION: Stop the application ;

• RESTART_APPLICATION: Restart the application ;

• SHUTDOWN: Shutdown Supvisors (i.e. all Supvisors instances) ;

• RESTART: Restart Supvisors (i.e. all Supvisors instances).

Important: The RESTART_PROCESS is NOT intended to replace the Supervisor autorestart for the local Supvisors
instance. Provided a program definition where autorestart is set to false in the Supervisor configuration and
where the running_failure_strategy option is set to RESTART_PROCESS in the Supvisors rules file, if the process
crashes, Supvisors will NOT restart the process.

Note: Given that this option is set on the program rules, program strategies within an application may be incom-
patible in the event of multiple failures. That’s why priorities have been set on this strategy. STOP_APPLICATION
supersedes RESTART_APPLICATION, which itself supersedes RESTART_PROCESS and finally CONTINUE. So if a pro-
gram with the RESTART_APPLICATION option fails at the same time that a program of the same application with the
STOP_APPLICATION option, only the STOP_APPLICATION will be applied.

When the RESTART_PROCESS strategy is evaluated, if the application is fully stopped - supposedly because of the failure
-, Supvisors will promote the RESTART_PROCESS into RESTART_APPLICATION. The idea is to benefit from a full start
sequence at application level rather than uncorrelated program restarts in the event of multiple failures within the same
application.

Hint: The STOP_APPLICATION strategy provides an answer to the following Supervisor request:

8.6. Running Failure strategy 91

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

• #874 - Bring down one process when other process gets killed in a group

Hint: The SHUTDOWN strategy provides an answer to the following Supervisor request:

• #712 - shutdown supervisord once one of the programs is killed

8.7 Stopping strategy

Supvisors provides a means to stop a process without telling explicitly where it is running.

8.7.1 Stopping a process

The internal Stopper of Supvisors applies the following logic to stop a process:

if the process is running:
perform a supervisor.stopProcess(namespec) XML-RPC to the Supervisor instances where the process
is running

This single job is considered completed when:

• a STOPPED event is received for this process ;

• an error is encountered (FATAL event, EXITED event whatever the exit code) ;

• no STOPPING event has been received 2 ticks after the XML-RPC ;

• no STOPPED event has been received X+2 ticks after the XML-RPC, X corresponding to the number of ticks
needed to cover the stopwaitsecs seconds of the program definition in the Supvisors instance where the
process has been requested to stop.

This principle is used for stopping a single process using a supvisors.stop_process XML-RPC.

8.7.2 Stopping an application

The application stop sequence is defined at the same moment than the application start sequence. It corresponds to a
dictionary where:

• the keys correspond to the list of stop_sequence values defined in the program rules of the application ;

• the value associated to a key is the list of programs having this key as stop_sequence.

Note: The Unmanaged applications do have a stop sequence. All their programs have the default stop_sequence
set to 0.

Hint: The logic applied here is an answer to the following Supervisor unresolved issue:

• #520 - allow a program to wait for another to stop before being stopped?

92 Chapter 8. Special Features

https://github.com/Supervisor/supervisor/issues/874
http://supervisord.org
https://github.com/Supervisor/supervisor/issues/712
http://supervisord.org
http://supervisord.org
https://github.com/Supervisor/supervisor/issues/520


Supvisors, Release 0.18

Hint: All the programs sharing the same stop_sequence are stopped simultaneously, which solves some of the
requests described in the following Supervisor unresolved issue:

• #723 - Restart waits for all processes to stop before starting any

The internal Stopper of Supvisors applies the following algorithm to stop an application:

while application stop sequence is not empty:
pop the process list having the greater stop_sequence

for each process in process list:
apply Stopping a process

wait for the jobs to complete

This principle is used for stopping a single application using a supvisors.stop_application XML-RPC.

8.7.3 Stopping all applications

The applications are stopped when Supvisors is requested to restart or shut down.

When entering the DISTRIBUTION state, each Supvisors instance evaluates also the global stop sequence using the
stop_sequence rule configured for the applications and processes.

The global stop sequence corresponds to a dictionary where:

• the keys correspond to the list of stop_sequence values defined in the application rules ;

• the value associated to a key is the list of application stop sequences whose applications have this key as
stop_sequence.

Upon reception of the supvisors.restart or supvisors.shutdown, the Supvisors instance uses the global stop
sequence to stop all the running applications in the defined order. The following pseudo-code explains the logic used:

while global stop sequence is not empty:
pop the application list having the greater stop_sequence

for each application in application list:
apply Stopping an application

wait for the jobs to complete

8.7. Stopping strategy 93

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/723


Supvisors, Release 0.18

8.8 Conciliation

Supvisors is designed so that there should be only one instance of the same process running on a set of nodes, although
all of them may have the capability to start it.

Nevertheless, it is still likely to happen in a few cases:

• using a request to Supervisor itself (through Web UI, supervisorctl, XML-RPC) ;

• upon a network failure.

Attention: In the event of a network failure - let’s say a network cable is unplugged -, if the auto_fence option is
not set, a Supvisors instance running on the isolated node will be set to SILENT instead of ISOLATED and its URL
will not disconnected from the subscriber socket.

Depending on the rules set, this situation may lead Supvisors to warm restart the processes that were running in
the lost Supvisors instance onto other Supvisors instances.

When the network failure is fixed, Supvisors will likely have to deal with a bunch of duplicated applications and
processes.

When such a conflict is detected, Supvisors enters in the CONCILIATION state. Depending on the
conciliation_strategy option set in the rpcinterface extension point, it applies a strategy to be rid of all duplicates:

SENICIDE

When applying the SENICIDE strategy, Supvisors keeps the youngest process, i.e. the process that has
been started the most recently, and stops all the others.

INFANTICIDE

When applying the INFANTICIDE strategy, Supvisors keeps the oldest process and stops all the others.

USER

That’s the easy one. When applying the USER strategy, Supvisors just waits for a third party to solve the
conflicts using Web UI, supervisorctl, XML-RPC, process signals, or any other solution.

STOP

When applying the STOP strategy, Supvisors stops all conflicting processes, which may lead the corre-
sponding applications to a degraded state.

RESTART

When applying the RESTART strategy, Supvisors stops all conflicting processes and restarts a new one.

RUNNING_FAILURE

When applying the RUNNING_FAILURE strategy, Supvisors stops all conflicting processes and deals with
the conflict as it would deal with a running failure, depending on the strategy defined for the process. So,
after the conflicting processes are all stopped, Supvisors may restart the process, stop the application,
restart the application or do nothing at all.

Supvisors leaves the CONCILIATION state when all conflicts are conciliated.

94 Chapter 8. Special Features

http://supervisord.org


CHAPTER

NINE

FREQUENT ASKED QUESTIONS

This section deals with frequent problems that could happen when experiencing Supvisors for the first time.

It is assumed that Supervisor is operational without the Supvisors plugin.

9.1 Error: . . . cannot be resolved

[bash] > supervisord -n
Error: supvisors.plugin:make_supvisors_rpcinterface cannot be resolved within␣
→˓[rpcinterface:supvisors]
For help, use /usr/local/bin/supervisord -h

This error happens in a early stage of Supervisor startup, when the plugin factory is called.

Just in case, make sure that supvisors.plugin:make_supvisors_rpcinterface has been copied correctly. Oth-
erwise, this is the symptom of an improper Supvisors installation.

Important: Supvisors requires a Python version greater than 3.6 and must be available from the Python interpreter
used by Supervisor’s supervisord command.

Upon any doubt, check the Python version and start the interpreter in a terminal to test the import of Supvisors:

[bash] > which supervisord
/usr/local/bin/supervisord

[bash] > head -1 /usr/local/bin/supervisord
#!/usr/bin/python

[bash] > /usr/bin/python --version
Python 3.9.6

[bash] > /usr/bin/python
Python 3.9.6 (default, Nov 9 2021, 13:31:27)
[GCC 8.5.0 20210514 (Red Hat 8.5.0-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import supvisors
>>>

If an ImportError is raised, here follow some possible causes:

95

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

9.1.1 Wrong pip program

Issue: Supvisors may have been installed with a pip command corresponding to another Python version.

Solution: Install Supvisors using the pip command whose version corresponds to the Python version used by Super-
visor.

[bash] > /usr/bin/python --version
Python 3.9.6

[bash] > /usr/bin/pip --version
pip 20.2.4 from /usr/lib/python3.9/site-packages/pip (python 3.9)

9.1.2 Local Supvisors not in PYTHONPATH

Issue: In the case where Supvisors is not installed in the Python packages but used from a local directory, the
PYTHONPATH environment variable may not include the Supvisors location.

Solution: Set the Supvisors location in the PYTHONPATH environment variable before starting Supervisor.

[bash] > ls -d ~/python/supvisors/supvisors/__init__.py
/home/user/python/my_packages/supvisors/__init__.py
[bash] > export PYTHONPATH=/home/user/python/my_packages:$PYTHONPATH
[bash] > supervisord

9.1.3 Incorrect UNIX permissions

Issue: The user cannot read the Supvisors files installed (via pip or pointed by PYTHONPATH).

Solution: Update the UNIX permissions of the Supvisors package so that its files can be read by the user.

[user bash] > ls -l /usr/local/lib/python3.9/site-packages/supvisors/__init__.py
-rw-------. 1 root root 56 Feb 28 2022 /usr/local/lib/python3.9/site-packages/supvisors/
→˓__init__.py
[user bash] > su -
Password:
[root bash] > chmod -R a+r /usr/local/lib/python3.9/site-packages/supvisors
[root bash] > exit
exit
[user bash] > ls -l /usr/local/lib/python3.9/site-packages/supvisors/__init__.py
-rw-r--r--. 1 root root 56 Feb 28 2022 /usr/local/lib/python3.9/site-packages/supvisors/
→˓__init__.py
[bash] > supervisord

96 Chapter 9. Frequent Asked Questions

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

9.2 Error: Could not make supvisors rpc interface

At this stage, there must be some log traces available. If the startup of Supervisor ends with the following lines, there
must be an issue with the Supvisors configuration, and more particularly with the option supvisors_list.

[bash] > supervisord -n
[...]
2022-11-17 17:47:15,101 INFO RPC interface 'supervisor' initialized
[...]
Error: Could not make supvisors rpc interface
For help, use /usr/local/bin/supervisord -h

There are 4 main causes to that.

9.2.1 No inet_http_server

Issue: Supervisor is configured without any inet_http_server.

Solution: Configure Supervisor with a inet_http_server.

The aim of Supvisors is to deal with applications distributed over several hosts so it cannot work with a Supervisor
configured with an unix_http_server.

Based on the the following Supvisors configuration including only an unix_http_server:

[unix_http_server]
file=/tmp/supervisor.sock

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface

If Supervisor is started from the local host, the following log traces will be displayed:

[bash] > supervisord -n
[...]
2022-11-18 15:21:20,166 INFO RPC interface 'supervisor' initialized
2022-11-18 15:21:20,184;WARN;Traceback (most recent call last):
File "/usr/local/lib/python3.9/site-packages/supervisor-4.2.4-py3.9.egg/supervisor/

→˓http.py", line 821, in make_http_servers
inst = factory(supervisord, **d)

File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/plugin.
→˓py", line 128, in make_supvisors_rpcinterface

supervisord.supvisors = Supvisors(supervisord, **config)
File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/

→˓initializer.py", line 94, in __init__
self.supervisor_data = SupervisorData(self, supervisor)

File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/
→˓supervisordata.py", line 94, in __init__

raise ValueError(f'Supervisor MUST be configured using inet_http_server:
→˓{supervisord.options.configfile}')
ValueError: Supervisor MUST be configured using inet_http_server: etc/supervisord.conf

Error: Could not make supvisors rpc interface
For help, use /usr/local/bin/supervisord -h

9.2. Error: Could not make supvisors rpc interface 97

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

9.2.2 Incorrect Host name or IP address

Issue: The option supvisors_list includes a host name or an IP address that is unknown to the network configuration
of the local host.

Solution: Either fix the host name / IP address, or update your network configuration or remove the entry.

Based on the the following Supvisors configuration including an unknown host name:

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
supvisors_list = unknown_host,rocky51,rocky52

If Supervisor is started from the hosts rocky51 or rocky52, the following log traces will be displayed:

[bash] > supervisord -n
[...]
2022-11-17 17:47:15,120;ERRO;get_node_names: unknown host unknown_host
2022-11-17 18:43:52,834;CRIT;Wrong Supvisors configuration (supvisors_list)
2022-11-17 18:42:24,352;WARN;Traceback (most recent call last):
File "/usr/local/lib/python3.9/site-packages/supervisor-4.2.4-py3.9.egg/supervisor/

→˓http.py", line 821, in make_http_servers
inst = factory(supervisord, **d)

File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/plugin.
→˓py", line 128, in make_supvisors_rpcinterface

supervisord.supvisors = Supvisors(supervisord, **config)
File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/

→˓initializer.py", line 98, in __init__
self.supvisors_mapper.configure(self.options.supvisors_list, self.options.core_

→˓identifiers)
File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/

→˓supvisorsmapper.py", line 236, in configure
raise ValueError(message)

ValueError: could not define a Supvisors identification from "unknown_host"

Error: Could not make supvisors rpc interface
For help, use /usr/local/bin/supervisord -h

In the event where the host name or IP address seems legit to the user, here are a few explanations about how Supvisors
identifies the local Supervisor instance among the supvisors_list elements:

• Supvisors extracts the host_name from the <identifier>host_name:http_port:internal_port element
and stores the host name and aliases returned by the socket.gethostbyaddr function.

• Supvisors considers that the local Supervisor instance is the element whose fully-qualified domain name, as
returned by the socket.getfqdn function, belongs to the list of host name and aliases.

From the example below, the values rocky51.cliche.bzh, rocky51 and 192.168.1.65 are valid host_name ele-
ments to be used in supvisors_list.

>>> from socket import gethostbyaddr, getfqdn
>>> gethostbyaddr('rocky51.cliche.bzh')
('rocky51.cliche.bzh', ['rocky51'], ['192.168.1.65'])
>>> gethostbyaddr('rocky51')
('rocky51.cliche.bzh', ['rocky51'], ['192.168.1.65'])
>>> gethostbyaddr('192.168.1.65')

(continues on next page)

98 Chapter 9. Frequent Asked Questions

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

('rocky51.cliche.bzh', ['rocky51'], ['192.168.1.65'])
>>> getfqdn()
'rocky51.cliche.bzh'

9.2.3 could not find local the local Supvisors

Issue: The option supvisors_list does not include any host name or IP address corresponding to the local host.

Solution: Either add the local host to the list, or avoid to start Supervisor from the local host using this configuration.

Based on the the following Supvisors configuration including 2 host names:

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
supvisors_list = rocky52,rocky53

if Supervisor is started from a host that is not present in this list, the following traces will be displayed:

[bash] > supervisord -n
[...]
2022-11-17 18:30:33,863;INFO;SupvisorsMapper.configure: identifiers=['rocky52', 'rocky53
→˓']
2022-11-17 18:30:33,863;ERRO;SupvisorsMapper.find_local_identifier: could not find local␣
→˓the local Supvisors in supvisors_list
2022-11-17 18:44:45,571;CRIT;Wrong Supvisors configuration (supvisors_list)
2022-11-17 18:44:45,572;WARN;Traceback (most recent call last):
File "/usr/local/lib/python3.9/site-packages/supervisor-4.2.4-py3.9.egg/supervisor/

→˓http.py", line 821, in make_http_servers
inst = factory(supervisord, **d)

File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/plugin.
→˓py", line 128, in make_supvisors_rpcinterface

supervisord.supvisors = Supvisors(supervisord, **config)
File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/

→˓initializer.py", line 98, in __init__
self.supvisors_mapper.configure(self.options.supvisors_list, self.options.core_

→˓identifiers)
File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/

→˓supvisorsmapper.py", line 240, in configure
self.find_local_identifier()

File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/
→˓supvisorsmapper.py", line 269, in find_local_identifier

raise ValueError(message)
ValueError: could not find the local Supvisors in supvisors_list

Error: Could not make supvisors rpc interface
For help, use /usr/local/bin/supervisord -h

9.2. Error: Could not make supvisors rpc interface 99

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

9.2.4 multiple candidates for the local Supvisors

Issue: This happens when multiple Supvisors instances have to be started on the same host. In that case, the option
supvisors_list includes at least 2 host names or IP addresses referring to the same host and that have not been
qualified using a Supervisor identification.

Solution: Use the Supervisor identification option and apply it to the supvisors_list.

Based on the the following Supvisors configuration including a host name rocky51 and its IP address 192.168.1.70:

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
supvisors_list = rocky51,rocky52,192.168.1.70:30000:

if Supervisor is started from the host rocky51, the following traces will be displayed:

[bash] > supervisord -n
[...]
2022-11-18 10:42:25,931;INFO;SupvisorsMapper.configure: identifiers=['rocky51', 'rocky52
→˓', '192.168.1.70:30000']
2022-11-18 10:42:25,931;ERRO;SupvisorsMapper.find_local_identifier: multiple candidates␣
→˓for the local Supvisors: ['rocky51', '192.168.1.70:30000']
2022-11-18 10:42:25,931;CRIT;Wrong Supvisors configuration (supvisors_list)
2022-11-18 10:42:25,940;WARN;Traceback (most recent call last):
File "/usr/local/lib/python3.9/site-packages/supervisor-4.2.4-py3.9.egg/supervisor/

→˓http.py", line 821, in make_http_servers
inst = factory(supervisord, **d)

File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/plugin.
→˓py", line 128, in make_supvisors_rpcinterface

supervisord.supvisors = Supvisors(supervisord, **config)
File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/

→˓initializer.py", line 98, in __init__
self.supvisors_mapper.configure(self.options.supvisors_list, self.options.core_

→˓identifiers)
File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/

→˓supvisorsmapper.py", line 240, in configure
self.find_local_identifier()

File "/usr/local/lib/python3.9/site-packages/supvisors-0.15-py3.9.egg/supvisors/
→˓supvisorsmapper.py", line 269, in find_local_identifier

raise ValueError(message)
ValueError: multiple candidates for the local Supvisors: ['rocky51', '192.168.1.70:30000
→˓']

Error: Could not make supvisors rpc interface
For help, use /usr/local/bin/supervisord -h

At the moment, a solution in Supvisors is to qualify the entry in supvisors_list by adding its Supervisor identifier.
This is also the name that will be used for the Web UI.

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
supvisors_list = <supv-01>rocky51,rocky52,<supv-03>192.168.1.70:30000:

Then Supervisor shall be started by passing this identification to the supervisord program.

100 Chapter 9. Frequent Asked Questions

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

[bash] > supervisord -ni supv-01

9.3 Remote host SILENT

A remote Supvisors instance may be declared SILENT, although supervisord is running on the remote host.

There is likely an issue with the firewall of the hosts. By default, a firewall is configured to block almost everything.
The Supervisor HTTP ports have to be explicitly allowed in the firewall configuration.

Issue: Without the Supvisors plugin, accessing the remote Supervisor web page using its URL is rejected.

Solution: Use HTTP ports that are allowed by the firewall or ask the UNIX administrator to enable the HTTP ports
used by the Supervisor configuration.

9.3.1 Inconsistent Supvisors configuration

Issue: Accessing the remote Supvisors web page using its URL is accepted. Various error messages may be received.

Solution: Make sure that the supvisors_list is consistent for all Supvisors instances, in accordance with rpcinter-
face extension point.

When using a simple Supervisor / Supvisors configuration as follows:

[inet_http_server]
port=:60000

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
supvisors_list = rocky51,rocky52,rocky53
internal_port = 60001

It is assumed that supervisordwill be started on the 3 hosts with the same configuration, i.e. with a Supervisor server
available on port 60000 and with Supvisors internal publisher available on port 60001.

If the Supervisor configuration on rocky52 is different and declares an inet_http_server on port 60100, the XML-
RPC from rocky51 and rocky53 towards rocky52 will fail.

A variety of different errors may be experienced depending on how wrong configuration is.

[bash] > supervisord -n
[...]
2022-11-18 18:16:20,428;ERRO;Context.on_tick_event: got tick from unknown␣
→˓Supvisors=rocky52
[...]
[ERROR] failed to check Supvisors=rocky52
[...]

9.3. Remote host SILENT 101

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

9.4 Empty Application menu

The Application Menu in the Supvisors Web UI unexpectedly contains only the application template.

In the Supvisors Web UI, it may happen that the Application Menu (see Dashboard) contains only the application
template. In this case, all applications are considered Unmanaged.

9.4.1 Wrong rules_files

Issue: The rules_files option is not set or the targeted files are not reachable.

Solution: Make sure that the rules_files option is set with reachable files.

When the rules_files option is set and Supvisors does not find any corresponding file, the following log trace is
displayed:

[bash] > supervisord -n
[...]
2022-11-18 19:22:53,201;WARN;SupvisorsOptions.to_filepaths: no rules file found
[...]

9.4.2 XML file not readable

Issue: The user cannot read the Supvisors XML rules file.

Solution: Update the UNIX permissions of the Supvisors XML rules file so that it can be read by the user.

When the rules_files option is set with a file that cannot be read, the following log trace is displayed:

[bash] > supervisord -n
[...]
2022-11-18 19:33:19,793;INFO;Parser: parsing rules from my_movies.xml
2022-11-18 19:33:19,797;WARN;Supvisors: cannot parse rules files: ['my_movies.xml'] -␣
→˓Error reading file 'my_movies.xml': failed to load external entity "my_movies.xml"
[...]

9.4.3 XML file invalid

Issue: The Supvisors XML rules file is syntactically incorrect.

Solution: Fix the Supvisors XML rules file syntax.

When the rules_files option is set with a file that is syntactically incorrect, the following log trace is displayed:

[bash] > supervisord -n
[...]
2022-11-18 19:26:34,713;INFO;Parser: parsing rules from my_movies.xml
2022-11-18 19:26:35,448;WARN;Supvisors: cannot parse rules files: ['my_movies.xml'] -␣
→˓expected '>', line 83, column 13 (my_movies.xml, line 83)
[...]

Hint: The XSD file rules.xsd provided in the Supvisors package can be used to validate the XML rules files.

102 Chapter 9. Frequent Asked Questions



Supvisors, Release 0.18

[bash] > xmllint --noout --schema rules.xsd my_movies.xml

9.4.4 No application declared

Issue: The Supvisors XML rules file has been parsed correctly but still no application in the menu of the Web UI.

Solution: For the Supervisor group name considered, make sure that an application element exists in a Supvisors XML
rules file.

So considering this group definition in Supervisor configuration:

[group:my_movies]
programs=program_1,program_2

An application element has to be included in a Supvisors XML rules file to make it Managed and displayed in the
Application menu of the Supvisors Web UI.

<root>
<application name="my_movies"/>

</root>

9.4. Empty Application menu 103

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

104 Chapter 9. Frequent Asked Questions



CHAPTER

TEN

SCENARIO 1

10.1 Context

In this use case, the application is distributed over 3 nodes. The process distribution is fixed. The application logs and
other data are written to a disk that is made available through a NFS mount point.

10.2 Requirements

Here are the use case requirements:

Requirement 1
Due to the inter-processes communication scheme, the process distribution shall be fixed.

Requirement 2
The application shall wait for the NFS mount point before it is started.

Requirement 3
An operational status of the application shall be provided.

Requirement 4
The user shall not be able to start an unexpected application process on any other node.

Requirement 5
The application shall be restarted on the 3 nodes upon user request.

Requirement 6
There shall be a non-distributed configuration for developers’ use, assuming a different inter-processes commu-
nication scheme.

Requirement 7
The non-distributed configuration shall not wait for the NFS mount point.

10.3 Supervisor configuration

There are undoubtedly many ways to skin the cat. Here follows one solution.

As an answer to Requirement 1 (Due to the inter-processes communication scheme, the process distribution shall be
fixed.) and Requirement 4 (The user shall not be able to start an unexpected application process on any other node.),
let’s split the Supervisor configuration file into 4 parts:

• the supervisord.conf configuration file ;

• the program definitions and the group definition (.ini files) for the first node ;

105

http://supervisord.org


Supvisors, Release 0.18

• the program definitions and the group definition (.ini files) for the second node ;

• the program definitions and the group definition (.ini files) for the third node.

All programs are configured using autostart=true.

For packaging facility, the full configuration is available to all nodes but the include section of the configuration file
uses the host_node_name so that the running configuration is actually different on all nodes.

[include]
files = %(host_node_name)s/*.ini

The resulting file tree would be as follows.

[bash] > tree
.

etc
rocky51

group_rocky51.ini
programs_rocky51.ini

rocky52
group_rocky52.ini
programs_rocky52.ini

rocky53
group_rocky53.ini
programs_rocky53.ini

supervisord.conf

For Requirement 6 (There shall be a non-distributed configuration for developers' use, assuming a different inter-
processes communication scheme.), let’s just define a group where all programs are declared. The proposal is to have
2 Supervisor configuration files, one for the distributed application and the other for the non-distributed application,
the variation being just in the include section.

[bash] > tree
.

etc
rocky51

group_rocky51.ini
programs_rocky51.ini

rocky52
group_rocky52.ini
programs_rocky52.ini

rocky53
group_rocky53.ini
programs_rocky53.ini

localhost
group_localhost.ini
programs_localhost.ini

supervisord.conf -> supervisord_distributed.conf
supervisord_distributed.conf
supervisord_localhost.conf
supvisors-rules.xml

Here is the resulting include sections:

106 Chapter 10. Scenario 1

http://supervisord.org


Supvisors, Release 0.18

# include section for distributed application in supervisord_distributed.conf
[include]
files = %(host_node_name)s/*.ini

# include section for non-distributed application in supervisord_localhost.conf
[include]
files = localhost/*.ini

About Requirement 2 (The application shall wait for the NFS mount point before it is started.), Supervisor does not
provide any facility to stage the starting sequence (refer to Issue #122 - supervisord Starts All Processes at the Same
Time). A workaround here would be to insert a wait loop in all the application programs (in the program command
line or in the program source code). The idea of pushing this wait loop outside the Supervisor scope - just before
starting supervisord - is excluded as it would impose this dependency on other applications eventually managed by
Supervisor.

With regard to Requirement 7 (The non-distributed configuration shall not wait for the NFS mount point.), this
workaround would require different program commands or parameters, so finally different program definitions from
Supervisor configuration perspective.

Supervisor provides nothing for Requirement 3 (An operational status of the application shall be provided.). The user
has to evaluate the operational status based on the process status provided by the Supervisor instances on the 3 nodes,
either using multiple supervisorctl shell commands, XML-RPCs or event listeners.

To restart the whole application (Requirement 5 (The application shall be restarted on the 3 nodes upon user request.)),
the user can perform supervisorctl shell commands or XML-RPCs on each Supervisor instance.

[bash] > for i in rocky51 rocky52 rocky53
... do
... supervisorctl -s http://$i:<port> restart scenario_1:*
... done

Eventually, all the requirements could be met using Supervisor but it would require additional software development
at application level to build an operational status, based on process information provided by Supervisor.

It would also require some additional complexity in the configuration files and in the program command lines to manage
a staged starting sequence of the programs in the group and to manage the distribution of the application over different
platforms.

10.4 Involving Supvisors

A solution based on Supvisors could use the following Supervisor configuration (same principles as the previous
section):

• the supervisord_distributed.conf configuration file for the distributed application ;

• the supervisord_localhost.conf configuration file for the non-distributed application ;

• the program definitions and the group definition (.ini files) for the first node ;

• the program definitions and the group definition (.ini files) for the second node ;

• the program definitions and the group definition (.ini files) for the third node ;

• the group definition including all application programs for a local node.

All programs are now configured using autostart=false.

10.4. Involving Supvisors 107

http://supervisord.org
https://github.com/Supervisor/supervisor/issues/122
https://github.com/Supervisor/supervisor/issues/122
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

10.4.1 Introducing the staged start sequence

About Requirement 2, Supvisors manages staged starting sequences and it offers a possibility to wait for a planned
exit of a process in the sequence. So let’s define a program scen1_wait_nfs_mount[_X] per node and whose role
is to exit (using an expected exit code, as defined in Supervisor program configuration) as soon as the NFS mount is
available.

Satisfying Requirement 7 is just about avoiding the inclusion of the scen1_wait_nfs_mount[_X] programs in the
Supervisor configuration file in the case of a non-distributed application. That’s why the Supervisor configuration of
these programs is isolated from the configuration of the other programs. That way, Supvisors makes it possible to
avoid an impact to program definitions, scripts and source code when dealing with such a requirement.

Here follows what the include section may look like in both Supervisor configuration files.

# include section for distributed application in supervisord_distributed.conf (unchanged)
[include]
files = %(host_node_name)s/*.ini

# include section for non-distributed application in supervisord_localhost.conf
# the same program definitions as the distributed application are used
[include]
files = */programs_*.ini localhost/group_localhost.ini

10.4.2 Rules file

Now that programs are not started automatically by Supervisor, a Supvisors rules file is needed to define the staged
starting sequence. A first naive - yet functional - approach would be to use a model for all programs to be started on
the same node.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<!-- models -->
<model name="model_rocky51">

<identifiers>rocky51</identifiers>
<start_sequence>2</start_sequence>
<required>true</required>

</model>
<model name="model_rocky52">

<reference>model_rocky51</reference>
<identifiers>rocky52</identifiers>

</model>
<model name="model_rocky53">

<reference>model_rocky51</reference>
<identifiers>rocky53</identifiers>

</model>
<!-- Scenario 1 Application -->
<application name="scen1">

<start_sequence>1</start_sequence>
<starting_failure_strategy>CONTINUE</starting_failure_strategy>
<programs>

<!-- Programs on rocky51 -->
<program name="scen1_hci">

<reference>model_rocky51</reference>
(continues on next page)

108 Chapter 10. Scenario 1

http://supervisord.org/configuration.html#program-x-section-values
http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

</program>
<program name="scen1_config_manager">

<reference>model_rocky51</reference>
</program>
<program name="scen1_data_processing">

<reference>model_rocky51</reference>
</program>
<program name="scen1_external_interface">

<reference>model_rocky51</reference>
</program>
<program name="scen1_data_recorder">

<reference>model_rocky51</reference>
</program>
<program name="scen1_wait_nfs_mount_1">

<reference>model_rocky51</reference>
<start_sequence>1</start_sequence>
<wait_exit>true</wait_exit>

</program>
<!-- Programs on rocky52 -->
<program name="scen1_sensor_acquisition_1">

<reference>model_rocky52</reference>
</program>
<program name="scen1_sensor_processing_1">

<reference>model_rocky52</reference>
</program>
<program name="scen1_wait_nfs_mount_2">

<reference>model_rocky52</reference>
<start_sequence>1</start_sequence>
<wait_exit>true</wait_exit>

</program>
<!-- Programs on rocky53 -->
<program name="scen1_sensor_acquisition_2">

<reference>model_rocky53</reference>
</program>
<program name="scen1_sensor_processing_2">

<reference>model_rocky53</reference>
</program>
<program name="scen1_wait_nfs_mount_3">

<reference>model_rocky53</reference>
<start_sequence>1</start_sequence>
<wait_exit>true</wait_exit>

</program>
</programs>

</application>
</root>

Note: About the choice to prefix all program names with ‘scen1_’

These programs are all included in a Supervisor group named scen1. It may indeed seem useless to add the information
into the program name. Actually the program names are quite generic and at some point the intention is to group all
the applications of the different use cases into an unique Supvisors configuration. Adding scen1 at this point is just

10.4. Involving Supvisors 109

http://supervisord.org


Supvisors, Release 0.18

to avoid overwriting of program definitions.

Note: A few words about how the scen1_wait_nfs_mount[_X] programs have been introduced here. It has to be
noted that:

• the start_sequence of these programs is lower than the start_sequence of the other application programs ;

• their attribute wait_exit is set to true.

The consequence is that the 3 programs scen1_wait_nfs_mount[_X] are started first on their respective node when
starting the scen1 application. Then Supvisors waits for all of them to exit before it triggers the starting of the other
programs.

Well, assuming that the node name could be included as a prefix to the program names, that would simplify the rules
file a bit.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<!-- models -->
<model name="model_rocky51">

<identifiers>rocky51</identifiers>
<start_sequence>2</start_sequence>
<required>true</required>

</model>
<model name="model_rocky52">

<reference>model_rocky51</reference>
<identifiers>rocky52</identifiers>

</model>
<model name="model_rocky53">

<reference>model_rocky51</reference>
<identifiers>rocky53</identifiers>

</model>
<!-- Scenario 1 Application -->
<application name="scen1">

<start_sequence>1</start_sequence>
<starting_failure_strategy>CONTINUE</starting_failure_strategy>
<programs>

<!-- Programs on rocky51 -->
<program pattern="rocky51_">

<reference>model_rocky51</reference>
</program>
<program name="scen1_wait_nfs_mount_1">

<reference>model_rocky51</reference>
<start_sequence>1</start_sequence>
<wait_exit>true</wait_exit>

</program>
<!-- Programs on rocky52 -->
<program pattern="rocky52_">

<reference>model_rocky52</reference>
</program>
<program name="scen1_wait_nfs_mount_2">

<reference>model_rocky52</reference>
<start_sequence>1</start_sequence>

(continues on next page)

110 Chapter 10. Scenario 1



Supvisors, Release 0.18

(continued from previous page)

<wait_exit>true</wait_exit>
</program>
<!-- Programs on rocky53 -->
<program pattern="rocky53_">

<reference>model_rocky53</reference>
</program>
<program name="scen1_wait_nfs_mount_3">

<reference>model_rocky53</reference>
<start_sequence>1</start_sequence>
<wait_exit>true</wait_exit>

</program>
</programs>

</application>
</root>

A bit shorter, still functional but the program names are now quite ugly. And the non-distributed version has not been
considered yet. With this approach, a different rules file is required to replace the node names with the developer’s host
name - assumed called rocky51 here for the example.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<!-- Scenario 1 Application -->
<application name="scen1">

<start_sequence>1</start_sequence>
<starting_failure_strategy>CONTINUE</starting_failure_strategy>
<programs>

<!-- Programs on localhost -->
<program pattern="">

<identifiers>rocky51</identifiers>
<start_sequence>1</start_sequence>
<required>true</required>

</program>
</programs>

</application>
</root>

This rules file is fairly simple here as all programs have the exactly same rules.

Hint: When the same rules apply to all programs in an application, an empty pattern can be used as it will match all
program names of the application.

But actually, there is a much more simple solution in the present case. Let’s consider this instead:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<!-- models -->
<model name="model_scenario_1">

<start_sequence>2</start_sequence>
<required>true</required>

</model>
<!-- Scenario 1 Application -->

(continues on next page)

10.4. Involving Supvisors 111



Supvisors, Release 0.18

(continued from previous page)

<application name="scen1">
<start_sequence>1</start_sequence>
<starting_failure_strategy>CONTINUE</starting_failure_strategy>
<programs>

<program pattern="">
<reference>model_scenario_1</reference>

</program>
<program pattern="wait_nfs_mount">

<reference>model_scenario_1</reference>
<start_sequence>1</start_sequence>
<wait_exit>true</wait_exit>

</program>
</programs>

</application>
</root>

Much shorter. Yet it does the same. For both the distributed application and the non-distributed application !

The main point is that the identifiers attribute is not used at all. Clearly, this gives Supvisors the authorization
to start all programs on every nodes. However Supvisors knows about the Supervisor configuration in the 3 nodes.
When choosing a node to start a program, Supvisors considers the intersection between the authorized nodes - all of
them here - and the possible nodes, i.e. the active nodes where the program is defined in Supervisor. One of the first
decisions in this use case is that every programs are known to only one Supervisor instance so that gives Supvisors
only one possibility.

For Requirement 3, Supvisors provides the operational status of the application based on the status of its processes,
in accordance with their importance. In the present example, all programs are defined with the same importance
(required set to true).

The key point here is that Supvisors is able to build a single application from the processes configured on the 3
nodes because the same group name (scen1) is used in all Supervisor configuration files. This also explains why
scen1_wait_nfs_mount[_X] has been suffixed with a number. Otherwise, Supvisors would have detected 3 running
instances of the same program in a Managed application, which is considered as a conflict and leads to a Conciliation
phase. Please refer to Conciliation for more details.

Here follows the relevant sections of the supervisord_distributed.conf configuration file, including the decla-
ration of the Supvisors plugin.

[include]
files = %(host_node_name)s/*.ini

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
supvisors_list = rocky51,rocky52,rocky53
rules_files = etc/supvisors_rules.xml

[ctlplugin:supvisors]
supervisor.ctl_factory = supvisors.supvisorsctl:make_supvisors_controller_plugin

And the equivalent in the supervisord_localhost.conf configuration file. No supvisors_list is provided here
as the default value is the local host name, which is perfectly suitable here.

[include]
files = */programs_*.ini localhost/group_localhost.ini

(continues on next page)

112 Chapter 10. Scenario 1

http://supervisord.org
http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

[rpcinterface:supvisors]
supervisor.rpcinterface_factory = supvisors.plugin:make_supvisors_rpcinterface
rules_files = etc/supvisors_rules.xml

[ctlplugin:supvisors]
supervisor.ctl_factory = supvisors.supvisorsctl:make_supvisors_controller_plugin

The final file tree is as follows.

[bash] > tree
.

etc
rocky51

group_rocky51.ini
programs_rocky51.ini
wait_nfs_mount.ini

rocky52
group_rocky52.ini
programs_rocky52.ini
wait_nfs_mount.ini

rocky53
group_rocky53.ini
programs_rocky53.ini
wait_nfs_mount.ini

localhost
group_localhost.ini

supervisord.conf -> supervisord_distributed.conf
supervisord_distributed.conf
supervisord_localhost.conf
supvisors_rules.xml

10.4.3 Control & Status

The operational status of Scenario 1 required by the Requirement 3 is made available through:

• the Application Page of the Supvisors Web UI, as a LED near the application state,

• the XML-RPC API (example below),

• the REST API (if supvisorsflask is started),

• the Status of the extended supervisorctl or supvisorsctl (example below),

• the Event interface.

>>> from supervisor.childutils import getRPCInterface
>>> proxy = getRPCInterface({'SUPERVISOR_SERVER_URL': 'http://localhost:61000'})
>>> proxy.supvisors.get_application_info('scen1')
{'application_name': 'scen1', 'statecode': 2, 'statename': 'RUNNING', 'major_failure':␣
→˓False, 'minor_failure': False}

10.4. Involving Supvisors 113



Supvisors, Release 0.18

[bash] > supervisorctl -c etc/supervisord_localhost.conf application_info scen1
Node State Major Minor
scen1 RUNNING True False

[bash] > supvisorsctl -s http://localhost:61000 application_info scen1
Node State Major Minor
scen1 RUNNING True False

To restart the whole application (Requirement 5), the following methods are available:

• the XML-RPC API (example below),

• the REST API (if supvisorsflask is started),

• the Status of the extended supervisorctl or supvisorsctl (example below),

• the restart button at the top right of the Application Page of the Supvisors Web UI.

>>> from supervisor.childutils import getRPCInterface
>>> proxy = getRPCInterface({'SUPERVISOR_SERVER_URL': 'http://localhost:61000'})
>>> proxy.supvisors.restart_application('CONFIG', 'scen1')
True

[bash] > supervisorctl -c etc/supervisord_localhost.conf restart_application CONFIG scen1
scenario_1 restarted

[bash] > supvisorsctl -s http://localhost:61000 restart_application CONFIG scen1
scenario_1 restarted

Here is a snapshot of the Application page of the Supvisors Web UI for the Scenario 1 application.

As a conclusion, all the requirements are met using Supvisors and without any impact on the application to be super-
vised. Supvisors improves application control and status.

114 Chapter 10. Scenario 1



Supvisors, Release 0.18

10.5 Example

The full example is available in Supvisors Use Cases - Scenario 1.

10.5. Example 115

https://github.com/julien6387/supvisors/tree/master/supvisors/test/use_cases/scenario_1


Supvisors, Release 0.18

116 Chapter 10. Scenario 1



CHAPTER

ELEVEN

SCENARIO 2

11.1 Context

In this use case, the application Scenario 2 is used to control an item. It is delivered in 2 parts:

• scen2_srv: dedicated to application services and designed to run on a server only,

• scen2_hci: dedicated to Human Computer Interfaces (HCI) and designed to run on a console only.

scen2_hci is started on demand from a console, whereas scen2_srv is available on startup. scen2_srv cannot be
distributed because of its inter-processes communication design. scen2_hci is not distributed so that the user gets all
the windows on the same screen. An internal data bus will allow scen2_hci to communicate with scen2_srv.

Multiple instances of the Scenario 2 application can be started because there are multiple items to control.

A common data bus - out of this application’s scope - is available to exchange data between Scenario 2 instances
and other applications dealing with other types of items and/or a higher control/command application (as described in
Scenario 3).

11.2 Requirements

Here follows the use case requirements.

11.2.1 Global requirements

Requirement 1
Given X items to control, it shall be possible to start X instances of the application.

Requirement 2
scen2_hci and scen2_srv shall not be distributed.

Requirement 3
An operational status of each application shall be provided.

Requirement 4
scen2_hci and scen2_srv shall start only when their internal data bus is operational.

Requirement 5
The number of application instances running shall be limited in accordance with the resources available (consoles
or servers up).

117



Supvisors, Release 0.18

11.2.2 Services requirements

Requirement 10
scen2_srv shall be started on servers only.

Requirement 11
The X scen2_srv shall be started automatically.

Requirement 12
Each scen2_srv shall be started once at most.

Requirement 13
There shall be a load-balancing strategy to distribute the X scen2_srv over the servers.

Requirement 14
Upon failure in its starting sequence, scen2_srv shall be stopped so that it doesn’t consume resources uselessly.

Requirement 15
As scen2_srv is highly dependent on its internal data bus, scen2_srv shall be fully restarted if its internal data
bus crashes.

Requirement 16
Upon server power down or failure, scen2_srv shall be restarted on another server, in accordance with the
load-balancing strategy.

Requirement 17
The scen2_srv interface with the common data bus shall be started only when the common data bus is opera-
tional.

11.2.3 HCI requirements

Requirement 20
A scen2_hci shall be started upon user request.

Requirement 21
The scen2_hci shall be started on the console from where the user request has been done.

Requirement 22
When starting a scen2_hci, the user shall choose the item to control.

Requirement 23
The user shall not be able to start two scen2_hci that control the same item.

Requirement 24
Upon failure, the starting sequence of scen2_hci shall continue.

Requirement 25
As scen2_hci is highly dependent on its internal data bus, scen2_hci shall be fully stopped if its internal data
bus crashes.

Requirement 26
Upon console failure, scen2_hci shall not be restarted on another console.

Requirement 27
scen2_hci shall be stopped upon user request.

118 Chapter 11. Scenario 2



Supvisors, Release 0.18

11.3 Supervisor configuration

The initial Supervisor configuration is as follows:

• The bin folder includes all the program scripts of the Scenario 2 application. The scripts get the Supervisor
program_name from the environment variable ${SUPERVISOR_PROCESS_NAME}.

• The template_etc folder contains the generic configuration for the Scenario 2 application:

– the console/group_hci.ini file that contains the definition of the scen2_hci group and programs,

– the server/group_server.ini file that contains the definition of the scen2_srv group and programs.

• The etc folder is the target destination for the configurations files of all applications to be supervised. In this
example, it just contains a definition of the common data bus (refer to Requirement 17 (The scen2_srv interface
with the common data bus shall be started only when the common data bus is operational.)) that will be auto-
started on all Supvisors instances. The etc folder contains the Supervisor configuration files that will be used
when starting supervisord.

– the supervisord_console.conf includes the definition of groups and programs that are intended to run
on the consoles,

– the supervisord_server.conf includes the definition of groups and programs that are intended to run
on the servers.

[bash] > tree
.

bin
check_common_data_bus.sh
check_internal_data_bus.sh
common_bus_interface.sh
common.sh
config_manager.sh
data_processing.sh
internal_data_bus.sh
sensor_acquisition.sh
sensor_control.sh
sensor_view.sh

etc
common

group_services.ini
supervisord_console.conf
supervisord_server.conf

template_etc
console

group_hci.ini
server

group_server.ini

11.3. Supervisor configuration 119

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

11.3.1 Homogeneous applications

Let’s tackle the first issue about Requirement 1. Supervisor does not provide support to handle homogeneous groups.
It only provides support for homogeneous process groups. Defining homogeneous process groups in the present case
won’t help as the program instances cannot be shared across multiple groups. However, it is possible to assign multiple
times the same program to different groups.

Assuming that the Scenario 2 application is delivered with the Supervisor configuration files for one generic item to
control and assuming that there are X items to control, the first job is duplicate X times all group definitions.

This may be a bit painful when X is great or when the number of applications concerned is great, so a script is provided
in the Supvisors package to make life easier.

[bash] > supvisors_breed -h
usage: supvisors_breed [-h] -t TEMPLATE [-p PATTERN] -d DESTINATION

[-b app=nb [app=nb ...]] [-x] [-v]

Duplicate the application definitions

optional arguments:
-h, --help show this help message and exit
-t TEMPLATE, --template TEMPLATE

the template folder
-p PATTERN, --pattern PATTERN

the search pattern from the template folder
-d DESTINATION, --destination DESTINATION

the destination folder
-b app=nb [app=nb ...], --breed app=nb [app=nb ...]

the applications to breed
-x, --extra create new files
-v, --verbose activate logs

For this example, let’s define X=3. Using greater values don’t change the complexity of what follows. It would just
need more resources to test. supvisors_breed duplicates 3 times the scen2_srv and scen2_hci groups found in
the template_etc folder and writes new configuration files into the etc folder.

[bash] > supvisors_breed -d etc -t template_etc -b scen2_srv=3 -x -v
ArgumentParser: Namespace(breed={'scen2_srv': 3}, destination='etc', extra=True, pattern=
→˓'server/*.ini', template='template_etc', verbose=True)
Configuration files found:

server/programs_server.ini
server/group_server.ini

Template group elements found:
group:scen2_srv

New File: server/group_scen2_srv_01.ini
New [group:scen2_srv_01]
New File: server/group_scen2_srv_02.ini
New [group:scen2_srv_02]
New File: server/group_scen2_srv_03.ini
New [group:scen2_srv_03]
Writing file: etc/server/programs_server.ini
Empty sections for file: server/group_server.ini
Writing file: etc/server/group_scen2_srv_01.ini
Writing file: etc/server/group_scen2_srv_02.ini
Writing file: etc/server/group_scen2_srv_03.ini

(continues on next page)

120 Chapter 11. Scenario 2

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

[bash] > supvisors_breed -d etc -t template_etc -b scen2_hci=3 -x -v
ArgumentParser: Namespace(breed={'scen2_hci': 3}, destination='etc', extra=True, pattern=
→˓'console/*ini', template='template_etc', verbose=True)
Configuration files found:

console/group_console.ini
console/programs_console.ini

Template group elements found:
group:scen2_hci

New File: console/group_scen2_hci_01.ini
New [group:scen2_hci_01]
New File: console/group_scen2_hci_02.ini
New [group:scen2_hci_02]
New File: console/group_scen2_hci_03.ini
New [group:scen2_hci_03]
Empty sections for file: console/group_console.ini
Writing file: etc/console/programs_console.ini
Writing file: etc/console/group_scen2_hci_01.ini
Writing file: etc/console/group_scen2_hci_02.ini
Writing file: etc/console/group_scen2_hci_03.ini

Attention: The program definitions scen2_internal_data_bus and scen2_internal_check_data_bus are
common to scen2_srv and scen2_hci. In the use case design, it doesn’t matter as Supervisor is not configured to
include these definitions together. Otherwise, loading twice the same program definition may have led to incorrect
behavior (unless they’re strictly identical).

Note: About the choice to prefix all program names with ‘scen2_’

These programs are all included in a Supervisor group named scen2. It may indeed seem useless to add the information
into the program name. Actually the program names are quite generic and at some point the intention is to group all
the applications of the different use cases into an unique Supvisors configuration. Adding scen2 at this point is just
to avoid overwriting of program definitions.

The resulting file tree is as follows.

[bash] > tree
.

bin
check_common_data_bus.sh
check_internal_data_bus.sh
common_bus_interface.sh
common.sh
config_manager.sh
data_processing.sh
internal_data_bus.sh
sensor_acquisition.sh
sensor_control.sh
sensor_view.sh

etc
(continues on next page)

11.3. Supervisor configuration 121

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

common
programs_services.ini

console
group_scen2_hci_01.ini
group_scen2_hci_02.ini
group_scen2_hci_03.ini
programs_console.ini

server
group_scen2_srv_01.ini
group_scen2_srv_02.ini
group_scen2_srv_03.ini
programs_server.ini

supervisord_console.conf
supervisord_server.conf

template_etc
console

group_hci.ini
server

group_server.ini

Note: As a definition, let’s say that the combination of scen2_srv_01 and scen2_hci_01 is the Scenario 2
application that controls the item 01.

Here follows what the include section may look like in both Supervisor configuration files.

# include section in supervisord_server.conf
[include]
files = common/*.ini server/*.ini

# include section in supervisord_console.conf
[include]
files = common/*.ini console/*.ini

From this point, the etc folder contains the Supervisor configuration that satisfies Requirement 1.

11.3.2 Requirements met with Supervisor only

Server side

Requirement 10 (scen2_srv shall be started on servers only.) is satisfied by the supervisord_[server|console].
conf files. Only the supervisord_server.conf file holds the information to start scen2_srv.

Requirement 16 (Upon server power down or failure, scen2_srv shall be restarted on another server, in accordance
with the load-balancing strategy.) implies that all scen2_srv definitions must be available on all servers. So a single
supervisord_server.conf including all scen2_srv definitions and made available on all servers still makes sense.

The automatic start required in Requirement 11 (The X scen2_srv shall be started automatically.) could be achieved
by using the Supervisor autostart=True on the programs but considering Requirement 2 and Requirement 12
(Each scen2_srv shall be started once at most.), that becomes a bit complex.

It looks like 2 sets of program definitions are needed, one definition with autostart=True and one with
autostart=False. All scen2_srv groups must include program definitions with a homogeneous use of autostart.

122 Chapter 11. Scenario 2

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

In order to maintain the load balancing required in Requirement 13 (There shall be a load-balancing strategy to
distribute the X scen2_srv over the servers.), the user must define in advance which scen2_srv shall run on which
server and use the relevant program definition (autostart-dependent).

This all ends up with a dedicated supervisord_server[_S].conf configuration file for each server.

Console side

Now let’s have a look at the console side. Like for the server configuration, all scen2_hci must be available on
all consoles to satisfy Requirement 22 (When starting a scen2_hci, the user shall choose the item to control.). Per
definition, choosing one of the scen2_hci is a way to choose the item to control.

Requirement 20 (A scen2_hci shall be started upon user request.), Requirement 21 (The scen2_hci shall be started
on the console from where the user request has been done.) and Requirement 27 (scen2_hci shall be stopped upon
user request.) are simply met using supervisorctl commands.

[bash] > supervisorctl start scen2_hci_01:*
[bash] > supervisorctl stop scen2_hci_01:*

It is possible to do that from the Supervisor Web UI too, one program at a time, although it would be a bit clumsy and
a source of mistakes that would break Requirement 2.

However, there’s nothing to prevent another user to start the same scen2_hci on his console, as required in Require-
ment 23 (The user shall not be able to start two scen2_hci that control the same item.).

All the other requirements are about operational status, staged start sequence and automatic behaviour and there’s no
Supervisor function for that. It would require dedicated software development to satisfy them. Or Supvisors may be
used, which is the point of the next section.

11.4 Involving Supvisors

When involving Supvisors, all Scenario 2 programs are configured using autostart=false. Only the common
data bus - that is outside of the application scope - will be auto-started.

The Supvisors configuration is built over the Supervisor configuration defined above.

11.4.1 Rules file

All the requirements about automatic behaviour are dealt within the Supvisors rules file. This section will detail step
by step how it is built against the requirements.

First, as all scen2_srv instances have the same rules, a single application entry with a matching pattern is used for all
of them. The same idea applies to scen2_hci. Declaring these applications in the Supvisors rules file makes them
all Managed in Supvisors, which gives control over the X instances of the Scenario 2 application, as required in
Requirement 1.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<application pattern="scen2_srv_"/>
<application pattern="scen2_hci_"/>

</root>

Requirement 2 is just about declaring the distribution element to SINGLE_INSTANCE. It tells Supvisors that all
the programs of the application have to be started in the same Supvisors instance.

11.4. Involving Supvisors 123

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<application pattern="scen2_srv_">
<distribution>SINGLE_INSTANCE</distribution>

</application>

<application pattern="scen2_hci_">
<distribution>SINGLE_INSTANCE</distribution>

</application>
</root>

So far, all applications can be started on any Supvisors instance. Let’s compel scen2_hci to consoles and scen2_srv
to servers, which satisfies Requirement 10 and contributes to some console-related requirements. For better readabil-
ity, Instance aliases are introduced.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<alias name="servers">server_1,server_2,server_3</alias>
<alias name="consoles">console_1,console_2,console_3</alias>

<application pattern="scen2_srv_">
<distribution>SINGLE_INSTANCE</distribution>
<identifiers>servers</identifiers>

</application>

<application pattern="scen2_hci_">
<distribution>SINGLE_INSTANCE</distribution>
<identifiers>consoles</identifiers>

</application>
</root>

It’s time to introduce the staged start sequences. Requirement 11 asks for an automatic start of scen2_srv, so a
strictly positive start_sequence is added to the application configuration.

Because of Requirement 4, scen2_srv and scen2_hci applications will be started in three phases:

• first the scen2_internal_data_bus program,

• then the scen2_check_internal_data_bus whose job is to periodically check the
scen2_internal_data_bus status and exit when it is operational,

• other programs.

scen2_internal_data_bus and scen2_check_internal_data_bus are common to scen2_srv and scen2_hci
and follow the same rules so it makes sense to define a common model for them.

Due to Requirement 17, two additional phases are needed for scen2_srv:

• the scen2_check_common_data_buswhose job is to periodically check the common_data_bus status and exit
when it is operational,

• finally the scen2_common_bus_interface.

They are set at the end of the starting sequence so that the core of the scen2_srv application can be operational as a
standalone application, even if it’s not connected to other possible applications in the system.

124 Chapter 11. Scenario 2



Supvisors, Release 0.18

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<alias name="servers">server_1,server_2,server_3</alias>
<alias name="consoles">console_1,console_2,console_3</alias>

<model name="model_services">
<start_sequence>3</start_sequence>
<required>true</required>

</model>
<model name="check_data_bus">

<start_sequence>2</start_sequence>
<required>true</required>
<wait_exit>true</wait_exit>

</model>
<model name="data_bus">

<start_sequence>1</start_sequence>
<required>true</required>

</model>

<application pattern="scen2_srv_">
<distribution>SINGLE_INSTANCE</distribution>
<identifiers>servers</identifiers>
<start_sequence>1</start_sequence>
<programs>

<program name="scen2_common_bus_interface">
<reference>model_services</reference>
<start_sequence>4</start_sequence>

</program>
<program name="scen2_check_common_data_bus">

<reference>check_data_bus</reference>
<start_sequence>3</start_sequence>

</program>
<pattern name="">

<reference>model_services</reference>
</pattern>
<program name="scen2_check_internal_data_bus">

<reference>check_data_bus</reference>
</program>
<program name="scen2_internal_data_bus">

<reference>data_bus</reference>
</program>

</programs>
</application>

<application pattern="scen2_hci_">
<distribution>SINGLE_INSTANCE</distribution>
<identifiers>consoles</identifiers>
<programs>

<program pattern="">
<start_sequence>3</start_sequence>

</program>
<program name="scen2_check_internal_data_bus">

<reference>check_data_bus</reference>
(continues on next page)

11.4. Involving Supvisors 125



Supvisors, Release 0.18

(continued from previous page)

</program>
<program name="scen2_internal_data_bus">

<reference>data_bus</reference>
</program>

</programs>
</application>

</root>

Let’s now introduce the automatic behaviors.

Requirement 5 implies to check the resources available before allowing an application or a program to be started.
Supvisors has been designed to consider the resources needed by the program over the resources actually taken. To
achieve that, the expected_loading elements of the programs have been set (quite arbitrarily for the example).

The starting_strategy element of the scen2_srv application is set to LESS_LOADED to satisfy Requirement 13.
Before Supvisors starts an application or a program, it relies on the expected_loading set just before to:

• evaluate the current load on all Supvisors instances (due to processes already running),

• choose the Supvisors instance having the lowest load and that can accept the additional load required by the
program or application to start.

If none found, the application or the program is not started, which satisfies Requirement 5.

The starting_strategy element of the scen2_hci application is set to LOCAL to satisfy Requirement 21. Actually
this value is only used as a default parameter in the Application Page of the Supvisors Web UI and can be overridden.

In the same vein, the starting_failure_strategy element of the scen2_srv application is set to
STOP_APPLICATION (Requirement 14 (Upon failure in its starting sequence, scen2_srv shall be stopped so that it
doesn't consume resources uselessly.)) and the starting_failure_strategy element of the scen2_hci applica-
tion is set to CONTINUE (Requirement 24 (Upon failure, the starting sequence of scen2_hci shall continue.)).

Finally, there is automatic behavior to be set on the scen2_internal_data_bus programs. The
running_failure_strategy element of the internal_data_bus pattern is set to:

• RESTART_APPLICATION for scen2_srv applications (Requirement 15 (As scen2_srv is highly dependent on
its internal data bus, scen2_srv shall be fully restarted if its internal data bus crashes.)),

• STOP_APPLICATION for scen2_hci applications (Requirement 25 (As scen2_hci is highly dependent on its
internal data bus, scen2_hci shall be fully stopped if its internal data bus crashes.)),

A last impact on the rules file is about the application operational status (Requirement 3). Setting the required
element on the program definitions will discriminate between major and minor failures for the applications. Supvisors
will provide a separate operational status for scen2_srv and scen2_hci. It is still the user’s responsibility to merge
the status of scen2_srv_N and scen2_hci_N to get a global status for the Scenario 2 application controlling the
Nth item.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<!-- aliases -->
<alias name="servers">server_1,server_2,server_3</alias>
<alias name="consoles">console_1,console_2,console_3</alias>

<!-- models -->
<model name="model_services">

<start_sequence>3</start_sequence>
<required>true</required>
<expected_loading>10</expected_loading>

(continues on next page)

126 Chapter 11. Scenario 2



Supvisors, Release 0.18

(continued from previous page)

</model>
<model name="check_data_bus">

<start_sequence>2</start_sequence>
<required>true</required>
<wait_exit>true</wait_exit>

</model>
<model name="data_bus">

<start_sequence>1</start_sequence>
<required>true</required>
<expected_loading>2</expected_loading>

</model>

<!-- Scenario 2 Applications -->
<!-- Services -->
<application pattern="scen2_srv_">

<distribution>SINGLE_INSTANCE</distribution>
<identifiers>servers</identifiers>
<start_sequence>1</start_sequence>
<starting_strategy>LESS_LOADED</starting_strategy>
<starting_failure_strategy>STOP</starting_failure_strategy>
<programs>

<program name="scen2_common_bus_interface">
<reference>model_services</reference>
<start_sequence>4</start_sequence>

</program>
<program name="scen2_check_common_data_bus">

<reference>check_data_bus</reference>
<start_sequence>3</start_sequence>

</program>
<pattern name="">

<reference>model_services</reference>
</pattern>
<program name="scen2_check_internal_data_bus">

<reference>check_data_bus</reference>
</program>
<program name="scen2_internal_data_bus">

<reference>data_bus</reference>
<running_failure_strategy>RESTART_APPLICATION</running_failure_strategy>

</program>
</programs>

</application>

<!-- HCI -->
<application pattern="scen2_hci_">

<distribution>SINGLE_INSTANCE</distribution>
<identifiers>consoles</identifiers>
<starting_strategy>LOCAL</starting_strategy>
<starting_failure_strategy>CONTINUE</starting_failure_strategy>
<programs>

<program pattern="">
<start_sequence>3</start_sequence>
<expected_loading>8</expected_loading>

(continues on next page)

11.4. Involving Supvisors 127



Supvisors, Release 0.18

(continued from previous page)

</program>
<program name="scen2_check_internal_data_bus">

<reference>check_data_bus</reference>
</program>
<program name="scen2_internal_data_bus">

<reference>data_bus</reference>
<running_failure_strategy>STOP_APPLICATION</running_failure_strategy>

</program>
</programs>

</application>

</root>

Two last requirements to discuss. Actually they’re already met by the combination of others.

Requirement 16 aks for a restart of scen2_srv on another server if the server it is running on is shut down or
crashes. Due to the non-distributed status of this application, all its processes will be declared FATAL in Supvi-
sors for such an event and the application will be declared stopped. The RESTART_APPLICATION set to the
scen2_internal_data_bus program (Requirement 15) will then take over and restart the application on another
server, using the starting strategy LESS_LOADED set to the scen2_srv application (Requirement 13) and in accordance
with the resources available (Requirement 5).

On the same principle, the running failure strategy applied to the scen2_internal_data_bus program of the
scen2_hci application is STOP_APPLICATION. In the event of a console shutdown or crash, the scen2_hci will
already be declared stopped, so nothing more to do and Requirement 26 (Upon console failure, scen2_hci shall not
be restarted on another console.) is therefore satisfied.

11.4.2 Control & Status

The operational status of Scenario 2 required by the Requirement 3 is made available through:

• the Application Page of the Supvisors Web UI, as a LED near the application state,

• the XML-RPC API (example below),

• the REST API (if supvisorsflask is started),

• the Status of the extended supervisorctl or supvisorsctl (example below),

• the Event interface.

For the example, the following context applies:

• due to limited resources - 3 nodes are available (rocky51, rocky52 and rocky53) -, each node hosts 2 Supvisors
instances, one server and one console ;

• common_data_bus is Unmanaged so Supvisors always considers this ‘application’ as STOPPED (the process
status is yet RUNNING) ;

• scen2_srv_01, scen2_srv_02 and scen2_srv_03 are running on server_1, server_2, server_3, respec-
tively hosted by the nodes rocky51, rocky52, rocky53 ;

• scen2_hci_02 has been started on console_3 ;

• an attempt to start scen2_hci_03 on the server rocky51 has been rejected (only allowed on a console).

128 Chapter 11. Scenario 2



Supvisors, Release 0.18

>>> from supervisor.childutils import getRPCInterface
>>> proxy = getRPCInterface({'SUPERVISOR_SERVER_URL': 'http://localhost:61000'})
>>> proxy.supvisors.get_all_applications_info()
[{'application_name': 'common_data_bus', 'statecode': 0, 'statename': 'STOPPED', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen2_srv_01', 'statecode': 2, 'statename': 'RUNNING', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen2_srv_02', 'statecode': 2, 'statename': 'RUNNING', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen2_srv_03', 'statecode': 2, 'statename': 'RUNNING', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen2_hci_01', 'statecode': 0, 'statename': 'STOPPED', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen2_hci_02', 'statecode': 2, 'statename': 'RUNNING', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen2_hci_03', 'statecode': 0, 'statename': 'STOPPED', 'major_
→˓failure': True, 'minor_failure': True}]

[bash] > supvisorsctl -s http://localhost:61000 application_info
Application State Major Minor
common_data_bus STOPPED False False
scen2_srv_01 RUNNING False False
scen2_srv_02 RUNNING False False
scen2_srv_03 RUNNING False False
scen2_hci_01 STOPPED False False
scen2_hci_02 RUNNING False False
scen2_hci_03 STOPPED True True

To start a scen2_hci in accordance with Requirement 20, Requirement 21 and Requirement 22, the following
methods are available:

• the XML-RPC API (example below - beware of the target),

• the REST API (if supvisorsflask is started),

• the Application Control of the extended supervisorctl or supvisorsctl (examples below):

– using the configuration file if executed from the targeted console,

– using the URL otherwise,

• the start button at the top right of the Application Page of the Supvisors Web UI, assuming that the
user has navigated to this page using the relevant |Supvisors| instance (check the url if necessary).

>>> from supervisor.childutils import getRPCInterface
>>> proxy = getRPCInterface({'SUPERVISOR_SERVER_URL': 'http://rocky53:61000'})
>>> proxy.supvisors.start_application('LOCAL', 'scen2_hci_02')
True

[bash] > hostname
rocky53
[bash] > supervisorctl -c etc/supervisord_console.conf start_application LOCAL scen2_hci_
→˓02

(continues on next page)

11.4. Involving Supvisors 129



Supvisors, Release 0.18

(continued from previous page)

scen2_hci_02 started

[bash] > hostname
rocky51
[bash] > supvisorsctl -s http://rocky53:61000 start_application LOCAL scen2_hci_02
scen2_hci_02 started

Hint: Supervisor’s supervisorctl does not provide support for extended API using the -s URL option. But Supvi-
sors’ supvisorsctl does.

Requirement 12 and Requirement 23 require that one instance of one instance of scen2_srv_N and scen2_hci_N
are running at most. This is all managed by Supvisors as they are Managed applications. If the scen2_srv_N is
already running on a console, the Supvisors Web UI will prevent the user to start scen2_srv_N from another console.
Supvisors XML-RPC and extended supervisorctl commands will be rejected.

Attention: The Supervisor commands (XML-RPC or supervisorctl) are NOT curbed in any way by Supvisors
so it is still possible to break the rule using Supervisor itself. In the event of multiple Scenario 2 programs running,
Supvisors will detect the conflicts and enter a CONCILIATION state. Please refer to Conciliation for more details.

To stop a scen2_hci (Requirement 27), the following methods are available:

• the XML-RPC API (example below - whatever the target),

• the REST API (if supvisorsflask is started),

• the Application Control of the extended supervisorctl or supvisorsctl from any |Supvisors| instance
(example below),

• the stop button at the top right of the Application Page of the Supvisors Web UI, whatever the
|Supvisors| instance displaying this page.

Indeed, as Supvisors knows where the application is running, it is able to drive the application stop from anywhere.

>>> from supervisor.childutils import getRPCInterface
>>> proxy = getRPCInterface({'SUPERVISOR_SERVER_URL': 'http://localhost:61000'})
>>> proxy.supvisors.stop_application('scen2_hci_02')
True

[bash] > hostname
rocky51
[bash] > supervisorctl -c etc/supervisord_server.conf stop_application scen2_hci_02
scen2_hci_02 stopped

130 Chapter 11. Scenario 2

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

As a conclusion, all the requirements are met using Supvisors and without any impact on the application to be super-
vised. Supvisors improves application control and status.

11.5 Example

The full example is available in Supvisors Use Cases - Scenario 2.

Two versions are provided:

• one corresponding to the description above ;

• one based on the Supvisors discovery mode, using stereotypes rather than aliases.

11.5. Example 131

https://github.com/julien6387/supvisors/tree/master/supvisors/test/use_cases/scenario_2


Supvisors, Release 0.18

132 Chapter 11. Scenario 2



CHAPTER

TWELVE

SCENARIO 3

12.1 Context

The application Scenario 3 is the control/command application referenced to in Scenario 2. It is delivered in 2
parts:

• scen3_srv: dedicated to application services and designed to run on a server only,

• scen3_hci: dedicated to Human Computer Interfaces (HCI) and designed to run on a console only.

Both scen3_hci and scen3_srv are started automatically.

scen3_srv is unique and distributed over the servers. One instance of the scen3_hci application is started per console.

An internal data bus will allow all instances of scen3_hci to communicate with scen3_srv.

A common data bus - out of this application’s scope - is available to exchange data between Scenario 3 and other
applications dealing with other types of items (typically as described in the use case Scenario 2).

12.2 Requirements

Here follows the use case requirements.

12.2.1 Global requirements

Requirement 1
scen3_hci and scen3_srv shall be started automatically.

Requirement 2
An operational status of each application shall be provided.

Requirement 3
scen3_hci and scen3_srv shall start only when their internal data bus is operational.

Requirement 4
The starting of scen3_hci and scen3_srv shall not be aborted in case of failure of one of its programs.

Requirement 5
Although the Scenario 3 is not directly concerned by resource limitations, it shall partake in the overall load
information.

133



Supvisors, Release 0.18

12.2.2 Services requirements

Requirement 10
scen3_srv shall be distributed on servers only.

Requirement 11
There shall be a load-balancing strategy to distribute the scen3_srv programs over the servers.

Requirement 12
As scen3_srv is distributed, its internal data bus shall be made available on all servers.

Requirement 13
Upon server power down or failure, the programs of scen3_srv shall be re-distributed on the other servers, in
accordance with the load-balancing strategy.

Requirement 14
The scen3_srv interface with the common data bus shall be started only when the common data bus is opera-
tional.

12.2.3 HCI requirements

Requirement 20
A scen3_hci shall be started on each console.

Requirement 21
Upon console failure, scen3_hci shall not be restarted on another console.

12.3 Supervisor configuration

The initial Supervisor configuration is as follows:

• The bin folder includes all the program scripts of the Scenario 3 application. The scripts get the Supervisor
program_name from the environment variable ${SUPERVISOR_PROCESS_NAME}.

• The template_etc folder contains the generic configuration for the scen3_hci group and programs.

• The etc folder is the target destination for the configurations files of all applications to be supervised. It initially
contains:

– a definition of the common data bus (refer to Requirement 14) that will be auto-started on all Supvisors
instances.

– the configuration of the scen3_srv group and programs.

– the Supervisor configuration files that will be used when starting supervisord:

∗ the supervisord_console.conf includes the configuration files of the programs that are intended
to run on the consoles,

∗ the supervisord_server.conf includes the configuration files of the programs that are intended
to run on the servers.

[bash] > tree
.

bin
chart_view.sh
check_common_data_bus.sh

(continues on next page)

134 Chapter 12. Scenario 3

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

check_internal_data_bus.sh
common_bus_interface.sh
common.sh
internal_data_bus.sh
item_control.sh
item_manager.sh
track_manager.sh

etc
common

group_services.ini
server

group_server.ini
supervisord_console.conf
supervisord_server.conf

template_etc
console

group_hci.ini

The first update to the configuration is driven by the fact that the program internal_data_bus is common to
scen3_srv and scen3_hci. As the Scenario 3 application may be distributed on all consoles and servers
(Requirement 12 and Requirement 20), this program follows the same logic as the common data bus, so let’s re-
move it from scen3_srv and scen3_hci and to insert it into the common services.

Like the scen2_hci of the Scenario 2, scen3_hci needs to be duplicated so this an instance could be started on
each console. In this example, there are 3 consoles. supvisors_breed will thus be used again to duplicate 3 times
the scen3_hci groups and programs found in the template_etc folder.

However, unlike Scenario 2 where any scen2_hci could be started from any console, only one scen3_hci has to
be started here per console and including more than one instance of it in the local Supervisor is useless. So the option
-x of supvisors_breed will be used so that the duplicated configurations are written into separated files in the etc
folder. That will allow more flexibility when including files from the Supervisor configuration file.

[bash] > supvisors_breed -d etc -t template_etc -b scen3_hci=3 -x -v
ArgumentParser: Namespace(breed={'scen3_hci': 3}, destination='etc', extra=True, pattern=
→˓'**/*.ini', template='template_etc', verbose=True)
Configuration files found:

console/group_console.ini
console/programs_console.ini

Template group elements found:
group:scen3_hci

New File: console/group_scen3_hci_01.ini
New [group:scen3_hci_01]
New File: console/group_scen3_hci_02.ini
New [group:scen3_hci_02]
New File: console/group_scen3_hci_03.ini
New [group:scen3_hci_03]
Empty sections for file: console/group_console.ini
Writing file: etc/console/programs_console.ini
Writing file: etc/console/group_scen3_hci_01.ini
Writing file: etc/console/group_scen3_hci_02.ini
Writing file: etc/console/group_scen3_hci_03.ini

Note: About the choice to prefix all program names with ‘scen3_’

12.3. Supervisor configuration 135

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

These programs are all included in a Supervisor group named scen3. It may indeed seem useless to add the information
into the program name. Actually the program names are quite generic and at some point the intention is to group all
the applications of the different use cases into an unique Supvisors configuration. Adding scen3 at this point is just
to avoid overwriting of program definitions.

Based on the expected names of the consoles, an additional script is used to sort the files generated. The resulting file
tree is as follows.

[bash] > tree
.

bin
chart_view.sh
check_common_data_bus.sh
check_internal_data_bus.sh
common_bus_interface.sh
common.sh
internal_data_bus.sh
item_control.sh
item_manager.sh
system_health.sh
track_manager.sh

etc
common

group_services.ini
console

console_1
group_scen3_hci_01.ini

console_2
group_scen3_hci_02.ini

console_3
group_scen3_hci_03.ini

programs_console.ini
server

group_server.ini
supervisord_console.conf
supervisord_server.conf

template_etc
console

group_console.ini
programs_console.ini

Here follows what the include section may look like in both Supervisor configuration files.

# include section in supervisord_server.conf
[include]
files = common/*.ini server/*.ini

# include section in supervisord_console.conf
[include]
files = common/*.ini console/*.ini console/%(host_node_name)s/*.ini

136 Chapter 12. Scenario 3

http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

12.3.1 Requirements met with Supervisor only

Based on the configuration defined above, Supervisor can definitely satisfy the following requirements: Requirement
1, Requirement 4, Requirement 10, Requirement 12, Requirement 20 and Requirement 21.

As already described in the previous use cases, requirements about operational status, staged start sequence and auto-
matic behaviour are out of Supervisor’s scope and would require dedicated software development to satisfy them.

Next section details how Supvisors can be used to deal with them.

12.4 Involving Supvisors

As usual, when involving Supvisors, all Scenario 3 programs are configured using autostart=false. Exception
is made to the programs in the etc/common folder (common and internal data buses).

The Supvisors configuration is built over the Supervisor configuration defined above.

12.4.1 Rules file

As the logic of the starting sequence of Scenario 3 very similar to the Scenario 2 use case, there won’t be much detail
about that in the present section. Please refer to the other use case if needed.

The main difference is that scen3_internal_data_bus has been removed. As a reminder, the consequence of Re-
quirement 12 and Requirement 20 is that this program must run in all Supvisors instances, so it has been moved to
the services file and configured as auto-started.

Both applications scen3_srv and scen3_hci have their start_sequence set and strictly positive so they will be
automatically started, as required by Requirement 1. Please just note that scen3_hci has a greater start_sequence
than scen3_srv so it will be started only when scen3_srv is fully running.

Requirement 3 and Requirement 14 are satisfied by the following programs that are configured with a wait_exit
option:

• scen3_check_internal_data_bus and scen3_check_common_data_bus for scen3_srv.

• scen3_check_internal_data_bus for scen3_hci

The distribution options is not set for the scen3_srv application. As it is defaulted to true and as all scen3_srv
programs are configured with the identifiers option set with the servers alias, scen3_srv will be distributed over
the servers when starting, as required by Requirement 10.

The distribution options is set to false for the scen3_hci. In this case, only the identifiers option set to the
application element is taken into account and NOT the identifiers options set to the program elements. The value
#,consoles used here needs some further explanation.

When using hashtags in identifiers, applications and programs cannot be started anywhere until Supvisors solves
the ‘equation’. As defined in Using patterns and signs, an association will be made between the Nth application
scen3_hci_N and the Nth element of the consoles list. In the example, scen3_hci_01 will be mapped with Supvi-
sors instance console_1 once resolved.

This will result in having exactly one scen3_hci application per console, which satisfies Requirement 20.

Note: In scen3_hci, the program scen3_check_internal_data_bus references a model that uses server
Supvisors instances in its identifiers option. It doesn’t matter in the present case because, as told before, the
identifiers option of the non-distributed application supersedes the identifiers eventually set in its programs.

12.4. Involving Supvisors 137

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

Let’s now focus on the strategies and options used at application level.

In accordance with Requirement 4, the starting_failure_strategy option of both scen3_srv and scen3_hci
are set to CONTINUE (default is ABORT).

To satisfy Requirement 13, the running_failure_strategy option of scen3_srv has been set to
RESTART_PROCESS (via the model model_services). For scen3_hci, this option is not set and the default CONTINUE
is then used, as required in Requirement 21. Anyway, as the Nth application si only known by the Supervisor of the
Nth console, it is just impossible to start this application elsewhere.

Finally, in order to satisfy Requirement 5 and to have a load-balancing over the server Supvisors instances (refer to
Requirement 11), an arbitrary expected_loading has been set on programs. It is expected that relevant figures are
used for a real application. The starting_strategy option of scen3_srv has been set to LESS_LOADED.

Here follows the resulting rules file.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>

<!-- aliases -->
<alias name="servers">server_1,server_2,server_3</alias>
<alias name="consoles">console_1,console_2,console_3</alias>

<!-- models -->
<model name="model_services">

<identifiers>servers</identifiers>
<start_sequence>2</start_sequence>
<required>true</required>
<expected_loading>2</expected_loading>
<running_failure_strategy>RESTART_PROCESS</running_failure_strategy>

</model>
<model name="check_data_bus">

<identifiers>servers</identifiers>
<start_sequence>1</start_sequence>
<required>true</required>
<wait_exit>true</wait_exit>

</model>

<!-- Scenario 3 Applications -->
<!-- Services -->
<application name="scen3_srv">

<start_sequence>1</start_sequence>
<starting_strategy>LESS_LOADED</starting_strategy>
<starting_failure_strategy>CONTINUE</starting_failure_strategy>
<programs>

<program name="scen3_common_bus_interface">
<reference>model_services</reference>
<start_sequence>3</start_sequence>

</program>
<program name="scen3_check_common_data_bus">

<reference>check_data_bus</reference>
<start_sequence>2</start_sequence>

</program>
<program pattern="">

<reference>model_services</reference>
</program>

(continues on next page)

138 Chapter 12. Scenario 3

http://supervisord.org


Supvisors, Release 0.18

(continued from previous page)

<program name="scen3_check_internal_data_bus">
<reference>check_data_bus</reference>

</program>
</programs>

</application>

<!-- HCI -->
<application pattern="scen3_hci_">

<distribution>SINGLE_INSTANCE</distribution>
<identifiers>#,consoles</identifiers>
<start_sequence>3</start_sequence>
<starting_failure_strategy>CONTINUE</starting_failure_strategy>
<programs>

<program pattern="">
<start_sequence>2</start_sequence>
<expected_loading>8</expected_loading>

</program>
<program name="scen3_check_internal_data_bus">

<reference>check_data_bus</reference>
</program>

</programs>
</application>

</root>

12.4.2 Control & Status

The operational status of Scenario 3 required by the Requirement 2 is made available through:

• the Application Page of the Supvisors Web UI, as a LED near the application state,

• the XML-RPC API (example below),

• the REST API (if supvisorsflask is started),

• the Status of the extended supervisorctl or supvisorsctl (example below),

• the Event interface.

For the examples, the following context applies:

• due to limited resources - 3 nodes are available (rocky51, rocky52 and rocky53) -, each node hosts 2 Supvisors
instances, one server and one console ;

• common_data_bus and scen3_internal_data_bus are Unmanaged so Supvisors always considers these ‘ap-
plications’ as STOPPED ;

• scen3_srv is distributed over the 3 servers ;

• scen3_hci_01,program:scen3_hci_02, program:scen3_hci_03 have been respectively started on console_1,
console_2, console_3 .

The Supervisor configuration of the consoles has been changed to include the files related to the Supervisor identifier
console_X rather than those related to host_node_name. As there is no automatic expansion related to the Supervisor
identifier so far, an environmental variable is used.

12.4. Involving Supvisors 139

http://supervisord.org
http://supervisord.org
http://supervisord.org


Supvisors, Release 0.18

# include section in supervisord_console.conf
[include]
files = common/*.ini console/*.ini console/%(ENV_IDENTIFIER)s/*.ini

>>> from supervisor.childutils import getRPCInterface
>>> proxy = getRPCInterface({'SUPERVISOR_SERVER_URL': 'http://localhost:61000'})
>>> proxy.supvisors.get_all_applications_info()
[{'application_name': 'common_data_bus', 'statecode': 0, 'statename': 'STOPPED', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen3_internal_data_bus', 'statecode': 0, 'statename': 'STOPPED',
→˓'major_failure': False, 'minor_failure': False},
{'application_name': 'scen3_srv', 'statecode': 2, 'statename': 'RUNNING', 'major_failure
→˓': False, 'minor_failure': False},
{'application_name': 'scen3_hci_01', 'statecode': 2, 'statename': 'RUNNING', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen3_hci_02', 'statecode': 2, 'statename': 'RUNNING', 'major_
→˓failure': False, 'minor_failure': False},
{'application_name': 'scen3_hci_03', 'statecode': 2, 'statename': 'RUNNING', 'major_
→˓failure': False, 'minor_failure': False}]

[bash] > supvisorsctl -s http://localhost:61000 application_info
Application State Major Minor
common_data_bus STOPPED False False
scen3_internal_data_bus STOPPED False False
scen3_srv RUNNING False False
scen3_hci_01 RUNNING False False
scen3_hci_02 RUNNING False False
scen3_hci_03 RUNNING False False

As a conclusion, all the requirements are met using Supvisors and without any impact on the application to be super-
vised. Supvisors improves application control and status.

140 Chapter 12. Scenario 3



Supvisors, Release 0.18

12.5 Example

The full example is available in Supvisors Use Cases - Scenario 3.

Two versions are provided:

• one corresponding to the description above ;

• one based on the Supvisors discovery mode, using stereotypes rather than aliases.

12.5. Example 141

https://github.com/julien6387/supvisors/tree/master/supvisors/test/use_cases/scenario_3


Supvisors, Release 0.18

142 Chapter 12. Scenario 3



CHAPTER

THIRTEEN

CHANGE LOG

13.1 0.18 (2024-05-02)

• Refactoring of the Supvisors internal communications. The internal_port of the Supvisors section in the
Supervisor configuration file is no longer needed. As a consequence, the supvisors_list option is simplified as
follows: <identifier>host_name:http_port. The transitional SupvisorsInstanceStates.ISOLATING
state has been removed. The remote Supvisors instance becomes SILENT as soon as the published events fails
due to a transport issue.

• Implement Issue #50. A new tag operational_status in the Application rules allows to declare the formula
applicable to evaluate the application operational status. status_formula is added to the result of the XML-
RPC get_application_rules.

• Implement Issue #15. A StarterModel has been added to Supvisors to give a prediction of the application
distribution when started. The command is available through the new XML-RPCs test_start_application
and test_start_process and have been added to supervisorctl.

• The Supvisors core_identifiers option and the Supvisors rules can now accept indifferently Supervisor
identifiers or keys with the host:http_port format.

• Update the get_instance_info XML-RPC so that the function accepts a stereotype as parameter. As a con-
sequence, it now returns a list of dictionaries.

• Add a lazy attribute to the update_numprocs XML-RPC, so that when set combined to a numprocs decrease,
Supvisors defers the obsolete processes deletion from the Supervisor configuration only when the processes stop
(exit, crash or later user request) instead of stopping them immediately.

• Add monotonic time in internal model and exchanges to cope with time updates while Supvisors is running.
Impact on the XML-RPC get_instance_info, get_process_info and on the event interface for instance
status and process event.

• Add new get_statistics_status, enable_host_statistics, enable_process_statistics,
update_collecting_period XML-RPCs to support the possibility to get and update the collection of
host and process statistics. The corresponding commands stats_status, enable_stats and stats_period
have been added to supervisorctl. The JAVA client includes the new XML-RPCs.

• Add new get_all_inner_process_info and get_inner_process_info XML-RPCs to support debug in-
vestigation. They return internal information on the processes declared on a Supvisors instance.

• Move the host statistics collector to the statistics collector process. The option stats_collecting_period is
now applicable to host statistics collector.

• Re-apply the eventual process extra_args when restarting the application.

• In the Supervisors navigation menu of the Web UI, add a red light to Supervisor instances having raised a failure.

143

https://github.com/julien6387/supvisors/issues/50
https://github.com/julien6387/supvisors/issues/15


Supvisors, Release 0.18

• Allow the display of a software name and icon at the top of the Supvisors Web UI. The options software_name
and software_icon have been added to the Supvisors section of the Supervisor configuration file.

• All internal identifiers are now based on the host:http_port format.

• Rename the DEPLOYMENT state as DISTRIBUTION state to lift ambiguity (“deployment” is rather connoted when
dealing with the orchestration domain).

• Rework Supvisors RPCInterface exceptions.

• Rework the Web UI.

13.2 0.17.4 (2024-03-24)

• Fix bug that was randomly blocking Supvisors on restart or shutdown, due to a stdout flush hanging in multi-
processing bowels. The statistics Process is now started before any other thread.

• guest time removed from because CPU calculation because it is already accounted in user time on Linux.

• Fix process CPU so that it corresponds to the Linux top result.

• Use the latest versions of Sphinx-related modules for documentation, as sphinx-5.0 is now the minimal de-
pendency.

13.3 0.17.3 (2023-12-14)

• Fix regression when displaying the Network statistics in the Supvisors Web UI.

• Add restrictions to flask-restx dependencies.

13.4 0.17.2 (2023-12-04)

• Fix rare I/O exception by joining the SupervisorsProxy thread before exiting the SupvisorsMainLoop.

• Fix rare exception when host network statistics are prepared for display in the Supvisors Web UI in the event
where network interfaces have different history sizes.

• Fix the Supvisors identifier possibilities when using the distribution rule SINGLE_INSTANCE.

• Update the process statistics collector thread so that it exits by itself when supervisord is killed.

• Improve the node selection when using the distribution rule SINGLE_NODE.

• Use an asynchronous server in the Supvisors internal communications. The refactoring fixes an issue with the
TCP server that sometimes wouldn’t bind despite the SO_REUSEADDR set.

• Restore the action class in the HTML of the Supvisors Web UI.

• CI targets added for Python 3.11 and 3.12.

144 Chapter 13. Change Log



Supvisors, Release 0.18

13.5 0.17 (2023-08-17)

• Fix Issue #112. Write the disabilities file even if no call to disable and enable XML-RPCs have been done.
Try to create the folder at startup if it does not exist.

• Fix a case where the Starter would block if the process reaches the expected state without reception of the
corresponding event.

• Fix typo for zmq requirement when installing Supvisors from pypi.

• Fix flask-restx dependency in setup according to Python version.

• Fix uncaught exception the request to start a process is rejected due to a lack of resources. The exception was
dependent from the Python version (absent in 3.6 but raised in 3.9).

• Monkeypatch fix of Supervisor Issue #1596. Shutdown of the asyncore socket before it is closed.

• Improve robustness against network failures. All Supervisor events are applied to the local Supvisors instance
before they are published, so that it remains functional despite a network failure. The internal TCP sockets are
rebound when a network interface becomes up (requires psutil).

• Provide a discovery mode where the Supvisors instances are added on-the-fly without declaring them in the
supvisors_list option. The function relies on a Multicast Group definition (options multicast_group,
multicast_interface and multicast_ttl added to that purpose). The attribute discovery_mode is added
to the get_state and get_instance_info XML-RPCs.

• Add a new option stereotypes to support the discovery mode. The identifiers of the Application and
Program rules can now reference a Supvisors stereotype in addition to identifiers and aliases. By extension, it
is made available to the non-discovery mode.

• Add a new option syncho_options to enable the user to choose the conditions putting an end to the Supvisors
synchronization phase. More particularly when using the new USER condition, the Supvisors Web UI provides
a means to end the INITIALIZATION state, with optional Master selection. The command is also available as
an XML-RPC end_synchro and has been added to supervisorctl.

• The new item @ in the identifiers of the Program rules takes the behavior of the item # as it was before
Supvisors version 0.13, i.e. the assignment is strictly limited by the length of the identifiers list, without
roll-over. NOTE: This is not available for Application rules.

• Use host aliases when looking for the local Supvisors instance.

• Use IP address rather than host identification when dealing with SINGLE_NODE starting strategy.

• To prevent the situation that led the Starter to block, a new state CHECKED is added to
SupvisorsInstanceStates, which is actually a pre-RUNNING state. Such a Supvisors instance is con-
sidered active and is updated with received events but cannot be part of any starting sequence until all starting
jobs in progress are completed.

• Limit the consideration of the process forced state to display in the Application page of the Supvisors Web UI,
so that it does not interfere with the real process state.

• Add master_identifier to the output of the XML-RPCs get_supvisors_state and
get_instances_info. The supervisorctl commands sstate and instance_status have also
been updated.

• Monkeypatch Supervisor on-the-fly so that its logger is thread-safe and add log traces in Supvisors threads.

• Simplify the Supvisors state machine and replace the states RESTART and SHUTDOWN by a single state FINAL.

• Highlight the process line hovered by the cursor in the Supvisors Web UI.

• Remove the figures from the Supvisors Web UI when matplotlib is not installed.

13.5. 0.17 (2023-08-17) 145

https://github.com/julien6387/supvisors/issues/112
https://github.com/Supervisor/supervisor/issues/1596


Supvisors, Release 0.18

• Add RPC changeLogLevel to the JAVA client.

• Do not catch XmlRpc exceptions in the JAVA client.

• Refactoring of the Supvisors internal communications.

13.6 0.16 (2023-03-12)

• Add websockets as an option to the Supvisors event listener (Python 3.7+ only).

• Re-design the PyZMQ event listener using the zmq.asyncio support for better commonalities with the
wesockets solution.

• Re-design the statistics collection and compilation.

• The option stats_enabled takes additional values to control host and process statistics independently.

• The option stats_collecting_period has been added to set the minimum time between process statistics
collection.

• The option stats_periods accepts float values, not necessarily multiples of 5.

• Fix Issue #54. Add host and process statistics to the Supvisors event interface.

• Fix children process CPU times in statistics.

• Fix Solaris mode not taken into account for the process mean CPU value in the Supvisors Web UI.

• Fix Flask start_args to pass the extra arguments in the URL attributes rather than in the route.

• Only one Supvisors instance is running when both unix_http_server and inet_http_server sections are
defined in the supervisor configuration file.

• The local Supvisors instance is identified as the item having the same fully qualified domain name (as returned
by socket.gethostaddr and socket.getfqdn) among the items of the supvisors_list option.

• Use the HTTP server port to help the identification of the local Supvisors instance when multiple items of the
supvisors_list option fit and identifier is not set.

• The attribute process_failure is added to the get_instance_info XML-RPC to inform if there is a
process failure in the Supvisors instance. The attribute is also provided in the event interface and in the
instance_status option of the supervisorctl command.

• Raise an exception when the matching Supvisors instance in the supvisors_list option is inconsistent with
the local configuration.

• Add a Supvisors logo.

13.7 0.15 (2022-11-20)

• Publish / Subscribe pattern implemented for Supvisors internal communication. PyZmq is now only used for the
optional external publication interface.

• Make Supvisors robust to addProcessGroup / removeProcessGroup / reloadConfig Supervisor XML-
RPCs.

• Fix process CPU times in statistics so that children processes are all taken into account.

• Fix regression in supervisorctl application_rules where the former distributed entry was still used
instead of distribution.

146 Chapter 13. Change Log

https://github.com/julien6387/supvisors/issues/54


Supvisors, Release 0.18

• Fix uncaught exception when an unknown host name or IP address is used in the supvisors_list option.

• Fix ProcessEvent publication when no resource is available to start a process.

• Fix SupvisorsStatus event in JAVA ZMQ client.

• Manage the RuntimeError exception that could be raised by matplotlib when saving a graph.

• Add all_start and all_start_args to the list of supervisorctl commands. These commands respectively
invoke supervisor.startProcess and supvisors.start_args on all running Supvisors instances.

• Add tail_limit and tailf_limit options to override the default 1024 bytes used by Supervisor to display
the Tail pages of the Web UI.

• Inactive Log Clear / Stdout / Stderr buttons in the Web UI if no stdout / stderr is configured.

• Add resolution to ProcessStatus time information and store event time, so that forced state is correctly con-
sidered.

• A process is not considered disabled anymore when process rules don’t allow any candidate Supvisors instance.

• When psutil is not installed on a host, the statistics-related options of the Process and Host pages of the Web
UI are not displayed, just as if the option stats_enabled was set to False.

• Clarify the exceptions that could be raised in Supvisors startup.

• Add a FAQ to the documentation.

13.8 0.14 (2022-05-01)

• Implement Supervisor Issue #1054. Start / Stop / Restart buttons have been added to groups in the Supervisor
page of the Web UI so that it is possible to start / stop / restart all the processes of the group at once. The
application state and description have been removed from this table as the information was confusing.

• Fix issue where starting strategies would not work as expected when multiple Supvisors instances run on the
same node but their host_name is identified differently in the option supvisors_list.

• Replace on-the-fly the Supervisor gettags function so that the XML-RPC system.methodSignature works
with both Supervisor and Supvisors.

• Use socket.gethostaddr to validate the host names provided in the option supvisors_list.

• In the Application page of the Web UI, apply a disabled status to programs that are disabled on all their possible
Supvisors instances (according to rules and configuration).

• Maintain the auto-refresh set on the Supvisors restart / shutdown actions of the Web UI.

• Change the style of the matplotlib graphs.

13.9 0.13 (2022-02-27)

• Implement Supervisor Issue #591. It is possible to disable/enable programs using the new disable and enable
XML-RPCs. A new option disabilities_file has been added to support the persistence. The disabled
status of the processes is made available through the supvisors.get_local_process_info XML-RPC and
in the process table of the Web UI.

• Fix issue where Supvisors may be blocked in the DEPLOYMENT phase due to late process events.

• Add a new start_any_process XML-RPC that starts one process whose namespec matches the regular ex-
pression.

13.8. 0.14 (2022-05-01) 147

https://github.com/Supervisor/supervisor/issues/1054
https://github.com/Supervisor/supervisor/issues/591


Supvisors, Release 0.18

• Add a wait parameter to the update_numprocs XML-RPC.

• Add the principle of Supvisors modes to the output of the XML-RPCs get_supvisors_state and
get_instance_info. The modes are linked to the existence of jobs in progress in Starter and Stopper.

• The Supvisors modes are displayed to the Main page of the Web UI and the Supvisors instance modes are dis-
played to the Process and Host pages of the Web UI. In the navigation menu, the local Supvisors instance points
out the Supvisors instances where the modes are activated, and the applications involved in its own Starter or
Stopper.

• When using the item # in the identifiers of the Application or Program rules and with a number of candidate
applications or processes greater than the candidate identifiers, the assignment is performed by rolling over
the identifiers list.

• Add pid and uptime information to the supervisord entry of the process table in the Web UI.

• The application rules of a Supvisors rules file can be inserted in any order.

• Protect the Supervisor thread against any exception that could be raised by Supvisors when processing a Super-
visor event.

• Provide a Flask server that can be added as a Supervisor program to interact with Supvisors using a REST API.

• Update the CSS style of the inactive buttons in the Web UI.

• Fix CSS resources table cell height with recent versions of Firefox.

• Update the Web UI to allow multiple processes per line in the Supvisors instance boxes.

• Remove support to deprecated option distributed and to the possibility to have the program element directly
under the application element in a Supvisors rules file.

13.10 0.12 (2022-01-26)

• Fix crash following a supervisorctl update as the group added doesn’t include extra_args and
command_ref attributes in the Supervisor internal structure.

• Fix crash when the state of the Supvisors master is received before any Supvisors instance has been confirmed.

• Fix crash when receiving process state events from a Supvisors instance that has been checked while it was in a
RESTARTING state.

• Fix regression in Supvisors restarting / shutting down as the Master would actually restart / shut down before
notifying the other Supvisors instances of its state. The new Supvisors state RESTART has been introduced.

• Add supervisord entry to the process table of the Supvisors instance in the Web UI. This entry provides
process statistics and the possibility to view the Supervisor logs.

• Fix issue in Web UI with the Solaris mode not applied to the process CPU plot.

• Fix CSS for Supvisors instance boxes (table headers un-stickied) in the Main page of the Web UI.

• Fix process children CPU times counted twice in statistics.

• Add regex support to the pattern attribute of the application and program elements of the Supvisors rules
file.

• The distribution option has been added to replace the distributed option in the Supvisors rules file. The
distributed option is deprecated and will be removed in the next version.

• Update the starting strategies so that the node load is considered in the event where multiple Supvisors instances
are running on the same node. The LESS_LOADED_NODE and MOST_LOADED_NODE starting strategies have been
added.

148 Chapter 13. Change Log



Supvisors, Release 0.18

• Update the RunningFailureHandler so that Starter and Stopper actions are all stored before they are
actually triggered.

• Add the RESTART and SHUTDOWN strategies to the running_failure_strategy option.

• Update Starter and Stopper so that event timeouts are based on ticks rather than time.

• Update InfanticideStrategy and SenicideStrategy so that the conciliation uses the Stopper. This avoids
duplicated conciliation requests when entering the CONCILIATION state.

• When receiving a forced state due to a Starter or Stopper timeout, check if the expected process state has
been reached before actually forcing the state. Events may have crossed.

• The programs section has been added in the application section of the Supvisors rules file. All program
definitions should be placed in this section rather than directly in the application section. The intention is
for the next Supvisors version to be able to declare application options in any order. Note that having program
sections directly in the application section is still supported but deprecated and will be removed in the next
version.

• Add the starting_failure_strategy option in the program section of the Supvisors rules file. It supersedes
the values eventually set in the application section.

• Add the inactivity_ticks option to the Supvisors section of the Supervisor configuration file to enable more
flexibility in a congested system.

• Add node_name and port information to the result of the get_instance_info XML-RPC and to the instance
status of the Supvisors event listener.

• In the Process page of the Web UI, add buttons to shrink / expand all applications.

• Use a different gradient in the Web UI for running processes that have ever crashed.

• Fix CSS process table cell height with recent versions of Firefox.

• Use hexadecimal strings for the shex attribute in the Web UI URL.

• Add action class to the start/stop/restart/shutdown buttons in the headers of the Supvisors web pages.

• Move PyZmq sockets creation to the main thread so that a bind error is made explicit in log traces.

• Remove support to deprecated options, attributes and XML-RPCs (address_list, force_synchro_if,
rules_file, address_name, addresses, get_master_address, get_address_info and
get_all_addresses_info).

13.11 0.11 (2022-01-02)

• Fix Issue #99. Update the Supvisors design so that it can be used to supervise multiple Supervisor instances on
multiple nodes. This update had a major impact on the source code. More particularly:

– The XML-RPCs get_master_identifier, get_instance_info and get_all_instances_info
have been added to replace get_master_address, get_address_info and
get_all_addresses_info.

– The supervisorctl command instance_status has been added to replace address_status.

– The XML-RPCs that would return attributes address_name and addresses are now returning
identifier and identifiers respectively. This impacts the following XML-RPCs (and related
supervisorctl commands):

∗ get_application_info

∗ get_all_application_info

13.11. 0.11 (2022-01-02) 149

https://github.com/julien6387/supvisors/issues/99


Supvisors, Release 0.18

∗ get_application_rules

∗ get_address_info

∗ get_all_addresses_info

∗ get_all_process_info

∗ get_process_info

∗ get_process_rules

∗ get_conflicts.

– The supvisors_list option has been added to replace address_list in the Supvisors sec-
tion of the Supervisor configuration file. This option accepts a more complex definition:
<identifier>host_name:http_port:internal_port. Note that the simple host_name is still sup-
ported in the event where Supvisors doesn’t have to deal with multiple Supervisor instances on the same
node.

– The core_identifiers option has been added to replace force_synchro_if in the Supvisors section
of the Supervisor configuration file. It targets the names deduced from the supvisors_list option.

– The identifiers option has been added to replace the addresses option in the Supvisors rules file.
This option targets the names deduced from the supvisors_list option.

– The address-like attributes, XML-RPCs and options are deprecated and will be removed in the next
version.

• Fix Issue #98. Move the heartbeat emission to the Supvisors thread to avoid being impacted by a Supervisor
momentary freeze. On the heartbeat reception part, consider that the node is SILENT based on a number of ticks
instead of time.

• Fix issue with supvisors.stop_process XML-RPC that wouldn’t stop all processes when any of the targeted
processes is already stopped.

• Fix exception when authorization is received from a node that is not in CHECKING state.

• Fix regression (missing disconnect) on node isolation when fencing is activated.

• Fix issue in statistics compiler when network interfaces are dynamically created / removed.

• Refactoring of Starter and Stopper.

• The module rpcrequests has been removed because useless. The function getRPCInterface of th module
supervisor.childutils does the job.

• The startsecs and stopwaitsecs program options have been added to the results of
get_all_local_process_info and get_local_process_info.

• The option rules_file is updated to rules_files and supports multiple files for Supvisors rules. The option
rules_file is thus deprecated and will be removed in the next version.

• Add a new restart_sequence XML-RPC to trigger a full application start sequence.

• Update the restart_application and restart_processXML-RPC so that processes can restart themselves
using them.

• Add expected_exit to the output of supervisorctl sstatus when the process is EXITED.

• Add the new option stats_enabled to enable/disable the statistics function.

• Update start_process, stop_process, restart_process, process_rules in supervisorctl so that
calls are made on each individually process rather than process group when all is used as parameter.

• Add exit codes to erroneous Supvisors calls in supervisorctl.

150 Chapter 13. Change Log

https://github.com/julien6387/supvisors/issues/98


Supvisors, Release 0.18

• When aborting jobs when re-entering the INITIALIZATION state, clear the structure holding the jobs in progress.
It has been found to stick Supvisors in the DEPLOYMENT state in the event where the Master node is temporarily
SILENT.

• Restrict the use of the XML-RPCs start_application, stop_application, restart_application to
Managed applications only.

• Review the logic of the refresh button in the Web UI.

• Add node time to the node boxes in the Main page of the Web UI.

• Sort alphabetically the entries of the application menu of the Web UI.

• Update the mouse pointer look on nodes in the Main and Host pages of the Web UI.

• Remove the useless timecode in the header of the Process and Host pages of the Web UI as it is now provided at
the bottom right of all pages.

• Add class “action” to Web UI buttons that trigger an XML-RPC.

• Switch from Travis-CI to GitHub Actions for continuous integration.

13.12 0.10 (2021-09-05)

• Implement Supervisor Issue #177. It is possible to update dynamically the program numprocs using the new
update_numprocs XML-RPC.

• Add targets Python 3.7 and Python 3.8 to Travis-CI.

13.13 0.9 (2021-08-31)

• Enable the hash ‘#’ for the addresses of a non-distributed application.

• Add supvisorsctl to pally the lack of support of supervisorctlwhen used with --serverurl URL option.
See related Supervisor Issue #1455.

• Provide breed.py as a binary of Supvisors: supvisors_breed. The script only considers group duplication
as it is fully valid to include multiple times a program definition in several groups.

• Move the contents of the [supvisors] section into the [rpcinterface:supvisors] section and benefit from
the configuration structure provided by Supervisor. The [supvisors] section itself is thus obsolete.

• Remove deprecated support of pattern elements.

• Fix issue when using the Web UI Application page from a previous launch.

• Invert the stop sequence logic, starting from the greatest stop_sequence number to the lowest one.

• When stop_sequence is not set in the rules files, it is defaulted to the start_sequence value. With the new
stop sequence logic, the stop sequence is by default exactly the opposite of the start sequence.

• Fix Nodes’ column width for supervisorctl application_rules.

• CHANGES.rst replaced with CHANGES.md.

• ‘Scenario 3’ has been added to the Supvisors use cases.

• A ‘Gathering’ configuration has been added to the Supvisors use cases. It combines all uses cases.

13.12. 0.10 (2021-09-05) 151

https://github.com/Supervisor/supervisor/issues/177
https://github.com/Supervisor/supervisor/issues/1455


Supvisors, Release 0.18

13.14 0.8 (2021-08-22)

• Fix exception in INITIALIZATION state when the Master declared by other nodes is not RUNNING yet and the
core nodes are RUNNING.

• Fix exception when program rules and extra arguments are tested against a program unknown to the local Super-
visor.

• Fix issue about program patterns that were applicable to all elements. The scope of program patterns is now
limited to their owner application.

• Fix issue with infinite tries of application restart when the process cannot be started due to a lack of resources
and RESTART_APPLICATION is set on the program in the Supvisors rules file.

• Fix issue about application state not updated after a node has become silent.

• Fix issue when choosing a node in Starter. Apply the requests that have not been satisfied yet for non-distributed
applications.

• Review logic for application major / minor failures.

• Simplify the insertion of applications to start or stop in Commander jobs.

• Add support for application patterns in the Supvisors rules file.

• In the Supvisors rules file, pattern elements are deprecated and are replaced by program elements with
a pattern attribute instead of a name attribute. Support for pattern elements will be removed in the next
version of Supvisors.

• Node aliases have been added to the Supvisors rules file.

• Add the current node to all pages of Web UI to be aware of the node that displays the page.

• The Web UI is updated to handle a large list of applications, nodes, processor cores and network interfaces.

• In the Process page of the Web UI, expand / shrink actions are not applicable to programs that are not owned by
a Supervisor group.

• In the Applications navigation menu of the Web UI, add a red light near the Applications title if any application
has raised a failure.

• In the Application page of the Web UI, default starting strategy is the starting strategy defined in the Supvisors
rules file for the application considered.

• In the Application ang Process page, the detailed process statistics can be deselected.

• Titles added to the output of :program:supervisorctl address_status and application_info.

• The XML schema has been moved to a separate file rules.xsd.

• Remove dependency to netifaces as psutil provides the function.

• ‘Scenario 2’ has been added to the Supvisors use cases.

• A script breed.py has been added to the installation package. It can be used to duplicate the applications based
on a template configuration and more particularly used to prepare the Scenario 2 of the Supvisors use cases.

152 Chapter 13. Change Log



Supvisors, Release 0.18

13.15 0.7 (2021-08-15)

• Fix Issue #92. The Master drives the state of all Supvisors instances and a simplified state machine has been
assigned to non-master Supvisors instances. The loss of the Master instance is managed in all relevant states.

• Fix issue about applications that would be started automatically whereas their start_sequence is 0. The re-
gression has been introduced during the implementation of applications repair in Supvisors 0.6.

• Enable stop sequence on Unmanaged applications.

• In the Applications navigation menu of the Web UI, add a red light to applications having raised a failure.

• New application rules distributed and addresses added to the Supvisors rules file. Non-distributed ap-
plications have all their processes started on the same node chosen in accordance with the addresses and the
starting_strategy.

• Add the starting_strategy option to the application section of the Supvisors rules file.

• Fix issue when choosing a node in Starter. The starting strategies considers the current load of the nodes and
includes the requests that have not been satisfied yet.

• Fix issue with infinite process restart when the process crashes and RESTART_PROCESS is set on the program in
the Supvisors rules file. When the process crashes, only the Supervisor autorestart applies. The Supvisors
RESTART_PROCESS applies only when the node becomes inactive.

• Fix exception when forcing the state on a process that is unknown to the local Supervisor.

• Promote the RESTART_PROCESS into RESTART_APPLICATION if the application is stopped.

• For the Master election, give a priority to nodes declared in the forced_synchro_if option if used.

• When using the forced_synchro_if option and when auto_fence is activated, do not isolate nodes as long
as synchro_timeout has not passed.

• In the INITALIZATION state, skip the synchronization phase upon notification of a known Master and adopt it.

• Add reciprocity to isolation even if auto_fence is not activated.

• In the process description of the Web UI Application page, add information about the node name. In particular,
it is useful to know where the process was running when it is stopped.

• Start adding use cases to documentation, inspired by real examples. ‘Scenario 1’ has been added.

13.16 0.6 (2021-08-01)

• Applications that are not declared in the Supvisors rules file are not managed. Unmanaged applications have no
start/stop sequence, no state and status (always STOPPED) and Supvisors does not raise a conflict if multiple
instances are running over multiple nodes.

• Improve Supvisors stability when dealing with remote programs undefined locally.

• Add expand / shrink actions to applications to the ProcInstanceView of the Web UI.

• Upon authorization of a new node in Supvisors, back to DEPLOYMENT state to repair applications.

• Add RPC change_log_level to dynamically change the Supvisors logger level.

• Application state is evaluated only against the starting sequence of its processes.

• Fix blocking issue when Master is stopped while in DEPLOYMENT state.

• Fix issue with applications that would not fully stop when using the STOP_APPLICATION starting failure strategy.

13.15. 0.7 (2021-08-15) 153

https://github.com/julien6387/supvisors/issues/92


Supvisors, Release 0.18

• Fix issue related to Issue #85. An exception was raised when the program procnum was greater than the list of
applicable nodes.

• Fix Issue #91. Fix CSS style on the process tables in HTML.

• Fix Issue #90. The Supvisors Master node drives the transition to OPERATION.

• In the Web UI, set the process state color to FATAL when the process has exited unexpectedly.

• Change the default expected loading to 0 in the program section of the Supvisors rules file.

• Python Enum used for enumerations (not available in Python 2.7).

• Remove supvisors_shortcuts from source code to get rid of IDE warnings.

• All unit tests updated from unittest to pytest.

• Include this Change Log to documentation.

13.17 0.5 (2021-03-01)

• New option force_synchro_if to force the end of the synchronization phase when a subset of nodes is active.

• New starting strategy LOCAL added to command the starting of an application on the local node only.

• Fix Issue #87. Under particular circumstances, Supvisors could have multiple Master nodes.

• Fix Issue #86. The starting and stopping sequences may fail and block when a sub-sequence includes only failed
programs.

• Fix Issue #85. When using # in the address_list program rule of the Supvisors rules file, a subset of nodes
can optionally be defined.

• Fix Issue #84. In the Supvisors rules file, program rules can be defined using both model reference and attributes.

• The Web UI uses the default starting strategy of the configuration file.

• The layout of Web UI statistics sections has been rearranged.

• Fix CSS style missing for CHECKING node state in tables.

• Star added to the node box of the Master instance on the main page.

• Type annotations are added progressively in source code.

• Start switching from unittest to pytest.

• Logs (especially debug and trace) updated to remove printed objects.

13.18 0.4 (2021-02-14)

• Auto-refresh button added to all pages.

• Web UI Main page reworked by adding a subdivision of application in node boxes.

• Fix exception when exiting using Ctrl+c from shell.

• Fix exception when rules files is not provided.

154 Chapter 13. Change Log

https://github.com/julien6387/supvisors/issues/85
https://github.com/julien6387/supvisors/issues/91
https://github.com/julien6387/supvisors/issues/90
https://github.com/julien6387/supvisors/issues/87
https://github.com/julien6387/supvisors/issues/86
https://github.com/julien6387/supvisors/issues/85
https://github.com/julien6387/supvisors/issues/84


Supvisors, Release 0.18

13.19 0.3 (2020-12-29)

• Fix Issue #81. When Supvisors logfile is set to AUTO, Supvisors uses the same logger as Supervisor.

• Fix Issue #79. When FATAL or UNKNOWN Process state is forced by Supvisors, spawnerr was missing in the
listener payload.

• Useless folder rsc_ref deleted.

• design folder moved to a dedicated GitHub repository.

• 100% coverage reached in unit tests.

13.20 0.2 (2020-12-14)

• Migration to Python 3.6. Versions of dependencies are refreshed, more particularly Supervisor 4.2.1.

• CSS of Web UI updated / simplified.

• New action added to Host Process page of WebUI: tail -f stderr button.

• New information actions added to Application page of WebUI:

– description field.

– clear logs, tail -f stdout, tail -f stderr buttons.

• Fix Issue #75. Supvisors takes into account the username and the password of inet_http_server in the
supervisord section.

• Fix Issue #17. The user selections on the web UI are passed to the URL.

• Fix Issue #72. The extra arguments are shared between all Supvisors instances.

• README.rst replaced with README.md.

• Coverage improved in tests.

• Docs target added to Travis-CI.

13.21 0.1 (2017-08-11)

Initial release.

13.19. 0.3 (2020-12-29) 155

https://github.com/julien6387/supvisors/issues/81
https://github.com/julien6387/supvisors/issues/79
https://github.com/julien6387/supvisors/issues/75
https://github.com/julien6387/supvisors/issues/17
https://github.com/julien6387/supvisors/issues/72


Supvisors, Release 0.18

156 Chapter 13. Change Log



CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• modindex

• search

157



Supvisors, Release 0.18

158 Chapter 14. Indices and tables



PYTHON MODULE INDEX

s
supvisors.client.wssubscriber, 81
supvisors.client.zmqsubscriber, 77
supvisors.rpcinterface, 45

159



Supvisors, Release 0.18

160 Python Module Index



INDEX

C
change_log_level() (supvi-

sors.rpcinterface.RPCInterface method),
52

conciliate() (supvisors.rpcinterface.RPCInterface
method), 52

D
disable() (supvisors.rpcinterface.RPCInterface

method), 60

E
enable() (supvisors.rpcinterface.RPCInterface

method), 60
enable_host_statistics() (supvi-

sors.rpcinterface.RPCInterface method),
54

enable_process_statistics() (supvi-
sors.rpcinterface.RPCInterface method),
54

G
get_all_applications_info() (supvi-

sors.rpcinterface.RPCInterface method),
48

get_all_inner_process_info() (supvi-
sors.rpcinterface.RPCInterface method),
50

get_all_instances_info() (supvi-
sors.rpcinterface.RPCInterface method),
47

get_all_local_process_info() (supvi-
sors.rpcinterface.RPCInterface method),
50

get_all_process_info() (supvi-
sors.rpcinterface.RPCInterface method),
49

get_api_version() (supvi-
sors.rpcinterface.RPCInterface method),
45

get_application_info() (supvi-
sors.rpcinterface.RPCInterface method),

47
get_application_rules() (supvi-

sors.rpcinterface.RPCInterface method),
51

get_conflicts() (supvi-
sors.rpcinterface.RPCInterface method),
52

get_inner_process_info() (supvi-
sors.rpcinterface.RPCInterface method),
50

get_instance_info() (supvi-
sors.rpcinterface.RPCInterface method),
46

get_local_process_info() (supvi-
sors.rpcinterface.RPCInterface method),
49

get_master_identifier() (supvi-
sors.rpcinterface.RPCInterface method),
46

get_process_info() (supvi-
sors.rpcinterface.RPCInterface method),
48

get_process_rules() (supvi-
sors.rpcinterface.RPCInterface method),
51

get_statistics_status() (supvi-
sors.rpcinterface.RPCInterface method),
54

get_strategies() (supvi-
sors.rpcinterface.RPCInterface method),
46

get_supvisors_state() (supvi-
sors.rpcinterface.RPCInterface method),
45

M
module

supvisors.client.wssubscriber, 81
supvisors.client.zmqsubscriber, 77
supvisors.rpcinterface, 45

161



Supvisors, Release 0.18

O
on_application_status() (supvi-

sors.client.wssubscriber.SupvisorsWsEventInterface
method), 81

on_application_status() (supvi-
sors.client.zmqsubscriber.SupvisorsZmqEventInterface
method), 78

on_host_statistics() (supvi-
sors.client.wssubscriber.SupvisorsWsEventInterface
method), 82

on_host_statistics() (supvi-
sors.client.zmqsubscriber.SupvisorsZmqEventInterface
method), 78

on_instance_status() (supvi-
sors.client.wssubscriber.SupvisorsWsEventInterface
method), 81

on_instance_status() (supvi-
sors.client.zmqsubscriber.SupvisorsZmqEventInterface
method), 78

on_process_event() (supvi-
sors.client.wssubscriber.SupvisorsWsEventInterface
method), 82

on_process_event() (supvi-
sors.client.zmqsubscriber.SupvisorsZmqEventInterface
method), 78

on_process_statistics() (supvi-
sors.client.wssubscriber.SupvisorsWsEventInterface
method), 82

on_process_statistics() (supvi-
sors.client.zmqsubscriber.SupvisorsZmqEventInterface
method), 78

on_process_status() (supvi-
sors.client.wssubscriber.SupvisorsWsEventInterface
method), 81

on_process_status() (supvi-
sors.client.zmqsubscriber.SupvisorsZmqEventInterface
method), 78

on_supvisors_status() (supvi-
sors.client.wssubscriber.SupvisorsWsEventInterface
method), 81

on_supvisors_status() (supvi-
sors.client.zmqsubscriber.SupvisorsZmqEventInterface
method), 77

R
restart() (supvisors.rpcinterface.RPCInterface

method), 53
restart_application() (supvi-

sors.rpcinterface.RPCInterface method),
56

restart_process() (supvi-
sors.rpcinterface.RPCInterface method),
58

restart_sequence() (supvi-
sors.rpcinterface.RPCInterface method),
53

RPCInterface (class in supvisors.rpcinterface), 45

S
shutdown() (supvisors.rpcinterface.RPCInterface

method), 53
start_any_process() (supvi-

sors.rpcinterface.RPCInterface method),
57

start_application() (supvi-
sors.rpcinterface.RPCInterface method),
55

start_args() (supvisors.rpcinterface.RPCInterface
method), 57

start_process() (supvi-
sors.rpcinterface.RPCInterface method),
57

stop_application() (supvi-
sors.rpcinterface.RPCInterface method),
55

stop_process() (supvisors.rpcinterface.RPCInterface
method), 58

supvisors.client.wssubscriber
module, 81

supvisors.client.zmqsubscriber
module, 77

supvisors.rpcinterface
module, 45

SupvisorsWsEventInterface (class in supvi-
sors.client.wssubscriber), 81

SupvisorsZmqEventInterface (class in supvi-
sors.client.zmqsubscriber), 77

T
test_start_application() (supvi-

sors.rpcinterface.RPCInterface method),
56

test_start_process() (supvi-
sors.rpcinterface.RPCInterface method),
59

U
update_collecting_period() (supvi-

sors.rpcinterface.RPCInterface method),
54

update_numprocs() (supvi-
sors.rpcinterface.RPCInterface method),
59

162 Index


	Introduction
	Overview
	Definitions
	Platform Requirements
	Installation
	With an Internet access
	Without an Internet access
	Additional commands

	Running Supvisors

	Configuration
	Supervisor’s Configuration File
	rpcinterface extension point
	ctlplugin extension point
	Configuration File Example

	Supvisors’ Rules File
	<application> rules
	<program> rules
	Using patterns
	Using patterns and signs
	<model> rules
	Instance aliases
	Rules File Example


	Dashboard
	Common Menu
	Supvisors
	Supervisors
	Applications
	Copyright

	Common footer
	Main Page
	Main Page Header
	Main Page Contents

	Conciliation Page
	Conciliation Page Header
	Conciliation Page Contents

	Supervisor Page
	Supervisor Page Header
	Processes Section
	Host Section

	Application Page
	Application Page Header
	Application Page Contents


	XML-RPC API
	Status
	Supvisors Control
	Supvisors Statistics Status and Control
	Application Control
	Process Control
	XML-RPC Clients
	Python Client
	JAVA Client


	REST API
	Starting the Flask-RESTX application
	Using the REST API
	curl commands
	Python requests

	Using the Swagger UI

	supervisorctl extension
	Status
	Supvisors Control
	Statistics Control
	Application Control
	Process Control

	Event interface
	Available Protocols
	Message header
	Message data
	Supvisors status
	Supvisors instance status
	Application status
	Process status
	Process event
	Host statistics
	Process statistics

	ZeroMQ Implementation
	Python Client
	JAVA Client

	websockets Implementation
	Python Client


	Special Features
	Synchronizing Supvisors instances
	Communication protocols
	XML-RPC publication
	UDP Multicast

	Principles of Synchronization
	Common part
	STRICT option
	LIST option
	TIMEOUT option
	CORE option
	USER option


	Auto-Fencing
	Extra Arguments
	Starting strategy
	Choosing a Supvisors instance
	Starting a process
	Starting an application
	Starting all applications

	Starting Failure strategy
	Running Failure strategy
	Stopping strategy
	Stopping a process
	Stopping an application
	Stopping all applications

	Conciliation

	Frequent Asked Questions
	Error: … cannot be resolved
	Wrong pip program
	Local Supvisors not in PYTHONPATH
	Incorrect UNIX permissions

	Error: Could not make supvisors rpc interface
	No inet_http_server
	Incorrect Host name or IP address
	could not find local the local Supvisors
	multiple candidates for the local Supvisors

	Remote host SILENT
	Inconsistent Supvisors configuration

	Empty Application menu
	Wrong rules_files
	XML file not readable
	XML file invalid
	No application declared


	Scenario 1
	Context
	Requirements
	Supervisor configuration
	Involving Supvisors
	Introducing the staged start sequence
	Rules file
	Control & Status

	Example

	Scenario 2
	Context
	Requirements
	Global requirements
	Services requirements
	HCI requirements

	Supervisor configuration
	Homogeneous applications
	Requirements met with Supervisor only
	Server side
	Console side


	Involving Supvisors
	Rules file
	Control & Status

	Example

	Scenario 3
	Context
	Requirements
	Global requirements
	Services requirements
	HCI requirements

	Supervisor configuration
	Requirements met with Supervisor only

	Involving Supvisors
	Rules file
	Control & Status

	Example

	Change Log
	0.18 (2024-05-02)
	0.17.4 (2024-03-24)
	0.17.3 (2023-12-14)
	0.17.2 (2023-12-04)
	0.17 (2023-08-17)
	0.16 (2023-03-12)
	0.15 (2022-11-20)
	0.14 (2022-05-01)
	0.13 (2022-02-27)
	0.12 (2022-01-26)
	0.11 (2022-01-02)
	0.10 (2021-09-05)
	0.9 (2021-08-31)
	0.8 (2021-08-22)
	0.7 (2021-08-15)
	0.6 (2021-08-01)
	0.5 (2021-03-01)
	0.4 (2021-02-14)
	0.3 (2020-12-29)
	0.2 (2020-12-14)
	0.1 (2017-08-11)

	Indices and tables
	Python Module Index
	Index

